Laboratory Investigations for CO2 Based EOR · 2015. 6. 24. · Based EOR George J. Hirasaki Dept....

Preview:

Citation preview

Laboratory Investigations for CO2 Based EOR

George J. Hirasaki

Dept. of Chemical and Biomolecular Engineering Rice University

CO2 for EOR as CCUS November 19-21, 2013

Challenges Facing CO2 EOR

• Availability of CO2

• Minimum miscibility pressure (MMP) • Asphaltene deposition • Mobility control

– Low viscosity of CO2, viscous fingering

– WAG

– Gravity segregation – Heterogeneities – Foam mobility control

• Adsorption

Viscosity of CO2 and Reservoir Fluids

0.01

0.1

1

10

CO2 @ CP Brine 40 API Oil 30 API Oil

Vis

cosi

ty,

cp

Displacement Fronts for Different Mobility Ratios and Injected Pore Volumes

Habermann, B., 1960

Gravity Segregation with WAG

Stone, H.L., 1982

What is the effect of geological heterogeneity on EOR?

Layered sandpack model with 20:1 permeability Contrast

Li, et al, SPEJ, 2010

WAG fg =2/3

1.0 TPV

0.0 TPV

2.0 TPV

3.0 TPV

4.0 TPV

5.0 TPV

6.0 TPV

fg =0 water only

7

Waterflood and WAG Waterflood or WAG, 4 psi; Sweep is only a function of liquid injected

WAG fg =2/3

1.0 TPV

0.0 TPV

2.0 TPV

3.0 TPV

4.0 TPV

5.0 TPV

6.0 TPV

fg =0 water only

8

Waterflood and WAG Waterflood or WAG, 4 psi; Sweep is only a function of liquid injected

Layered sandpack with 19:1 permeability contrast about half-swept with water only but about completely swept with surfactant-

alternated-gas (SAG)

0.0 TPV

0.2 TPV

0.4 TPV

0.6 TPV

0.8 TPV

1.0 TPV

SAG, 6 psi, fg=1/3 Water only, 4 psi

Li, et al, SPEJ, 2010

Layered sandpack with 19:1 permeability contrast about half-swept with water only but about completely swept with surfactant-

alternated-gas (SAG)

0.0 TPV

0.2 TPV

0.4 TPV

0.6 TPV

0.8 TPV

1.0 TPV

SAG, 6 psi, fg=1/3 Water only, 4 psi

Li, et al, SPEJ, 2010

Fracture

Small pore network

Micro-fractures or vuggy rock

ΔP

Impermeable rock

How does foam displace oil from heterogeneous, oil-wet, fractured system?

Inj.

Pre-flood drain

Prod.

Camera view 1 mm 50 μm depth

oil-wet

1 mm

20 μm pore

throats

100μm pore

throats

-370μm

Charles Conn, 2013

Air & Water no surfactant

https://drive.google.com/file/d/0BwZmYz9LHrmoSHFZc1Y2ZkF3QzA/edit?usp=sharing

Water 0.05 mL/hr, Air 150 mbar

CONTROL

Pre-flood (pink = paraffin oil)

Post-flood (thick dark lamellae = air, thin lamellae = aqueous)

Air & Water no surfactant

CONTROL

1% AOS:LB, Seawater ionic strength (NaCl) AOS14-16 : LB

1 : 1 https://drive.google.com/file/d/0BwZmYz9LHrmoa1dwcVJDZDNHcEk/edit?usp=sharing

Surfactant 0.05 mL/hr, Air 150 mbar (good foamer)

BASE CASE

1% AOS:LB, Seawater ionic strength (NaCl) AOS14-16 : LB

1 : 1

Pre-flood (pink = paraffin oil)

Post-flood (thick dark lamellae = air, thin lamellae = aqueous)

BASE CASE

Diagram of the high temperature and high pressure core flooding setup

Pumps System

All wetting materials are Hastelloy Alloys, which can work under high P, T, salinity and low pH.

Leyu Cui, 2013

Apparent Viscosity of CO2 Co-Injected with Water or Non-Ionic Surfactant Solution in Dolomite Core

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

Ap

pa

ren

t V

isc

os

ity /

cp

total PV

L24-22

water

80% quality

Leyu Cui, 2012

Apparent Viscosity of WAG or SAG

0

20

40

60

80

100

0 1 2 3

Ap

pa

ren

t V

isc

os

ity /

cp

PV

L24-22waterSeries2Series3

Leyu Cui, 2012

Apparent Viscosity of CO2 Displacing Water or Non-Ionic Surfactant Solution in Dolomite Core

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

Ap

pa

ren

t V

isc

os

ity /

cp

total PV

water

L24-22

Leyu Cui, 2012

C12/Brine and CO2 Foam at 120 °C and 3400 psi

60% Foam Quality

0

10

20

30

40

50

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Pre

ssu

re

Gra

die

nt

/ p

si/f

t

Ap

par

en

t vi

sco

sity

/cp

TPV

Co-injection

WAG

MPG µ*=84.47 cp

0

10

20

30

40

50

0

20

40

60

80

100

0 1 2 3 4 5 6

pre

ssu

re

grad

ien

t/p

si/f

t

Ap

par

en

t V

isco

sity

/ c

p

TPV

co-injectionWAGMPG

50% Foam Quality

µ*=59.14 cp

Leyu Cui, 2013

Comparison of viscosity at 20 and 120 °C for C12/Brine and CO2 Foam

krw0=0.5; krg0=0.1768; S_wc=0.33; S_gr=0.2; nw=2.8; ng=1.1; (Bennion, 2008)

µw=0.2381 cp; µg=3.935×10-2 cp;

epdry=10000 Leyu Cui, 2013

Transport of surfactant is limited by adsorption on rock

• Adsorption of anionic surfactant is generally lower on sandstone compared to carbonate

• Adsorption on nonionic surfactant is generally lower on carbonate compared to sandstone

• Nonionic surfactant has cloud-point limitation at higher temperature

• Cationic or nonionic/cationic surfactant has potential for carbonate formation at high temperature

Surfactant Adsorption is Dependent on Surfactant/Mineral Interaction

Conclusions

• CO2 EOR can be improved by foam mobility control to improve reservoir sweep

• Foam improves sweep in layered systems

• Surfactant must be matched with reservoir parameters to limit surfactant adsorption