Kayla Holleman Variability of Submarine Groundwater Discharge in Honokohau Harbor, Hawaii Kayla...

Preview:

Citation preview

Kayla Holleman

Variability of Submarine Groundwater Discharge in Honokohau Harbor, Hawaii

Kayla HollemanCraig Glenn

Henrieta Dulaiova

Submarine Groundwater Discharge (SGD)

Introduction Results ConclusionsMethods

SGD

Submarine Groundwater Discharge (SGD)

• SGD is the discharge of fluids of any composition

• SGD is a naturally occurring phenomenon

• SGD is temporally and spatially different

• Source of anthropogenic and naturally occurring nutrients

Introduction Results ConclusionsMethods

Conservative Tracers

Introduction Results ConclusionsMethods

• Discrete point source measurements• Salinity • Temperature

•Grab Samples • Specific Nutrients• Total Nutrients

Geochemical Tracers

Introduction Results ConclusionsMethods

Geochemical Tracers

Introduction Results Conclusions

• Collect water in cubies• Filter sample water

through manganese impregnated fibers

• Analyze fibers via RaDECC

• Apply 224Ra/223Ra to TW equation

Methods

Sample Coverage

A

A’

Vertical Profiles

Introduction Methods ConclusionsResults

A A’

0 5 10 15 20 25 30 3505

101520253035404550

Dissolved Nutrient Characteristics

Introduction Results Conclusions

0 5 10 15 20 25 30 350

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 350

50100150200250300350400450500

PO

43- (μ

M)

Si(

OH

) 4 (μM

)

NO

3- (μM

)

SalinitySalinity

Salinity

Methods

0 5 10 15 20 25 30 350

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 350

1

2

3

4

5

6

7

8

Dissolved Nutrient Characteristics

Introduction Results Conclusions

PO

43- (μ

M)

Si(

OH

) 4 (μM

)

NO

3- (μM

)

0 5 10 15 20 25 30 350

10

20

30

40

50

60

70

SalinitySalinity

Salinity

Methods

0 5 10 15 20 25 30 350

10

20

30

40

50

60

70

80

f(x) = − 1.81344858660512 x + 63.7362090488741R² = 0.98390576198514

0 5 10 15 20 25 30 350

100

200

300

400

500

600

700

800

900

f(x) = − 21.9978763295607 x + 773.176302828587R² = 0.993646159557476

0 5 10 15 20 25 30 350

1

2

3

4

5

6

7

8

f(x) = − 0.127091390665817 x + 4.68709201634845R² = 0.965409374473733

Dissolved Nutrient Characteristics

Introduction Results Conclusions

PO

43- (μ

M)

Si(

OH

) 4 (μM

)

NO

3- (μM

)

SalinitySalinity

Salinity

Methods

SGD Flux

  Jun. 2010 Sept. 2010

Number 140 76

Rn (dpm/L) 19.2 15.9

Average Advection Plume (cm/d) 23 23

SGD Flux Plume (m3/d) 87.3 84.8

Average Advection (cm/d) 54 32

SGD Flux (m3/d) 202.3 118.5

0 5 10 15 20 25 30 35 400

50

100

150

200

250

300

350

400

Residence Time

Introduction Results Conclusions

223Ra (dpm/m3)

223Ra (dpm/m3)

224 R

a (d

pm/m

3 )

224 R

a (d

pm/m

3 )

0 10 20 30 40 50 60 70 800

100

200

300

400

500

600

700

800

Methods

0 5 10 15 20 25 30 35 400

50

100

150

200

250

300

350

400

f(x) = 4.6854171089841 xR² = 0.979887737541571

f(x) = 10.3146291200307 xR² = 0.983311378928376

Residence Time

Introduction Results Conclusions

223Ra (dpm/m3)

223Ra (dpm/m3)

224 R

a (d

pm/m

3 )

224 R

a (d

pm/m

3 )

0 10 20 30 40 50 60 70 800

100

200

300

400

500

600

700

800

f(x) = 10.3629751135003 xR² = 0.993304524013884

TwJUNE= <0.5 day

TwSEPTEMBER= 6.2-6.3 days

Methods

Conclusions

Introduction Results Conclusions

• The SGD flux within Honokohau Harbor plays a vital role in shaping the composition of the harbor water

• SGD in Honokohau Harbor occurs as a thin lens of brackish water floating on more dense salt water

• The nutrients within the harbor are enriched compared to the conservative mixing line demonstrated within the harbor

• The SGD flux experiences seasonal variability; thus, the residence time is seasonally variable

Methods