Interconnect and Packaging Lecture 2: Scalability

Preview:

DESCRIPTION

Interconnect and Packaging Lecture 2: Scalability. Chung-Kuan Cheng UC San Diego. Outlines. Trends of Interconnect and Packaging Scalability References. I. Trends of High Performance Interconnect and Packaging. I. Trends of High Performance Interconnect and Packaging. I. Trends. - PowerPoint PPT Presentation

Citation preview

1

Interconnect and PackagingLecture 2: Scalability

Chung-Kuan ChengUC San Diego

2

Outlines

I. Trends of Interconnect and Packaging

II. Scalability

References

3

I. Trends of High Performance Interconnect and Packaging

Year 2011 2015 2020 2025

D1/2 Pitch, nm 40 25 14 7

#metal layers 12 13 14 -

Ave permittivity 2.99 2.78 2.23 1.99

M1 pitch, nm/AR 76/1.8 42/1.9 24/2.0 13/2.2

M1 cap, pF/cm 1.9-2.1 1.8-2 1.6-1.8 1.5-1.8

RC delay, ns/mm 3.429 15.164 56.834 224.749

Int pitch, nm/AR 76/1.8 42/1.9 24/2.0 13/2.2

Int cap, pF/cm 1.7-1.9 1.6-1.9 1.3-1.6 1.1-1.5

RC delay, ns/mm 3.168 13.741 48.203 192.495

Glob pitch, nm 354-190 482-190 702-190 1125-190

Glob cap, pF/cm 2.0-2.3 1.8-2.2 1.4-1.8 1.2-1.6

RC delay, ns/mm 0.999 4.012 14.814 67.913

4

I. Trends of High Performance Interconnect and Packaging

Year 2005 2010 2011 2015 2020 2024

D1/2 Pitch, nm

80 45 40 25 14 9

Chip size, mm2

310 310 140-750 140-750 140-750 140-750

Pin count 3,400 4,009 720-5094 880-6191 1050-7902 1212-9148

Cents/pin 1.78 1.37 0.57-1.48 0.46-1.21 0.35-0.94 0.30-0.77

On-chip (MHz)

5,170 12,000

6,330 8,520 12,360 15,410

Off-chip (MHz)

3,125 10,000

12,000 30,000 55,000 75,000

Power Density w/mm2

0.54 0.64 0.7-0.55 0.9-0.75 1.15-1 1.35-1.20

5

I. Trends

• On-Chip Interconnect

• Delay (5-40 times of Speed of Light 5ps/mm)

• Power Density (> ½)

• Clock Skew: Variations (5GHz)

• Off-Chip Interconnect and Packaging• Number of pins (limited growth)

• Wire density (scalability)

• Speed and distance of interconnect

6

I. Trends

• On-chip Global Interconnect trend

• Concerns: Speed, Power, Cost, Reliability

0

40

80

120

160

200

180 150 130 100 90 80 70 65 57 50Process Technology Node (nm)

Dela

y (p

s)

1mm Global I nterconnect with Scattering(source: I TRS Roadmap 2004)

FO4 I nverter Delay (Estimated by0.36*Ldraw)

1mm distortionless Transmission Line (Speedof Light)

7

I. Trend

• Scalability• Latency, Bandwidth• Attenuation, Phase Velocity

• Distortion• Intersymbol Interference, Jitter, Cross Talks

• Clock Distribution• Skew, Jitter, Power Consumption

• IO Interface• Density• Impedance Matching• Cross Talks, Return loops

8

II. Scalability: Interconnect Models

RΔl LΔlCΔl

RΔl LΔl

CΔl …

i(z,t)

RΔl LΔl RΔl LΔl

Voltage drops through serial resistance and inductance

Current reduces through shunt capacitance

Resistance increases due to skin effect

Shunt conductance is caused by loss tangent

9

II. Scalability: Interconnect Models• Telegrapher’s equation:

),(),(),(

),(),(

),(

tzGVdt

tzdVC

dz

tzdIdt

tzdILtzRI

dz

tzdV

• Propagation Constant:

jCjGLjR ))((

• Wave Propagation:

//,),( 0 tzveVtzV tjzjz

• Characteristic Impedance

)/()( CjGLjRZ

10

II. Scalability of Physical Dimensions• R= ρ/A = ρ/(wt)• Z= ¼ (µ/ε)1/2 ln (b+w)/(t+w)• C= vZ• L= Z/v

b

w

t

ρ: resistivity of the conductorµ: magnetic permeabilityε: dielectric permittivityv: speed of light in the medium

11

II. Scalability of Physical Dimensions • Resistance: Increases quadratically with

scaling, e.g. ρ=2µΩ-cm

R=0.0002 Ω/µm at A=10µmx10µm

R=0.02 Ω/µm at A=1µmx1µm

R=2 Ω/µm at A=0.1µmx0.1µm

• Characteristic Impedance: No change

• Capacitance per unit length: No change

• Inductance per unit length: No change

12

II. Scalability of Frequency Ranges

1. RC Region

2. LC Region

3. Skin Effect

4. Loss Tangent

13

II. Scalability of Frequency Ranges

2/2/

))((

RCjRCRCj

CjGLjRj

1. RC Region 0,/ GLR

RCv

jwC

RZ

2,

e.g. on-chip wires R=2ohm/um (A=0.01um2)L=0.3pH/um, C=0.2fF/umR/L=6.7x1012

14

II. Scalability of Frequency Ranges: RC Region

gw

w

wg

ns

sclcc

lrr

lcsfcc

srr

2/

2/

/

2

1

1

Elmore delay model with buffers inserted in intervals

ltr: length from transmitter to receiverl: interval between buffersrn: nmos resistancecn: nmos gate capacitancecg=(1+g)cn, g is pn ratio.rw: wire resistance/unit lengthcw: wire capacitance/unit lengthf: cd/cg

l

ltr

l

llscrl

crcfslc

s

rlDelay tr

gwww

gwn

tr }2

))1(({)( 2

15

II. Scalability of Frequency Ranges: RC Region

l

llscrl

crcfslc

s

rlDelay tr

gwww

gwn

tr }2

))1(({)( 2

ww

gn

cr

crfl

)1(2

gw

wn

cr

crs

Elmore delay model with buffers inserted in intervals

Optimal interval

wgwntrtr ccrrfllDelay ))1(22(/)(

Optimal buffer size

Optimal delay

16

II. Scalability of Frequency Ranges

mcr

crfl

ww

gn 242)1(2

41gw

wn

cr

crs

Example: w= 85nm, t= 145nm

Optimal interval

mmpsmfsccrrfllDelay wgwntrtr /194/194))1(22(/)(

Optimal buffer size

Optimal delay

rn= 10Kohm,cn=0.25fF,cg=2.34xcn=0.585fFrw=2ohm/um, cw=0.2fF/um

17

II. Scalability of Frequency Ranges: RC Region

Year

(On-Chip)

2005 2010 2015

rncn (ps) 0.86 0.39 0.18

rwcw (ps/mm)* 284 616 1510

l (um) 168 77 33

D (ps/mm) 96 95 101

*no scattering, p=2.2uohm-cm

18

II. Scalability of Frequency Ranges: RC Region

• Device delay, rncn, decreases with scaling

• Wire delay, rwcw, increases with scaling

• Interval, l, between buffers decreases with scaling

• In order to increase the interval, we add the stages of each buffer.

19

II. Scalability of Frequency Ranges2. LC Region 0,/ GLR

LCjZ

RCjLjR

CjGLjRj

2)(

))((

LCvCLZ /1,

20

II. Scalability

3. Skin Effect Skin Depth:

/2

)2/( ZR

21

II. Scalability

3. Skin Effect Skin Depth:

/2

)2/( ZR

e.g. 0.7um @ f=10GHz, ρ=2uΩ-cmFor 100umx25umRDC=0.000008Ω/um= 8Ω/mR= 0.000114Ω/um=114Ω/m

22

II. Scalability4. Loss Tangent

tan),tan1( 0,00 CGCCj

)(/62/,02.0tan polyimidemGZp

)(/6.02/,002.0tan glassmGZg )(/06.02/,0002.0tan quartzmGZq

LCjGZ

Z

R

CjGLjRj

22

))((

23

References• E. Lee, et al., “CMOS High-Speed I/Os – Present and Future,” ICCD

2003.• http://www.itrs.net/• Ling Zhang, Low Power High Performance Interconnect Design and

Optimization, Thesis, UCSD, 2008.• G.A. Sai-Halasz G.A. "Performance Trends in High-End Processors,“

IEEE Proceedings, pp. 20-36, Jan. 1995.• M.T. Bohr, “Interconnect scaling-the real limiter to high performance

ULSI” Electron Devices Meeting, 1995., International10-13 Dec. 1995 pp.241 – 244.

Recommended