Incremental Metapost Graphics for TEXPower: mailto:[email protected]

Preview:

Citation preview

Incremental Metapost Graphics for TEXPower:Using feynmf/feynmp and emp

Thorsten Ohl (mailto:ohl@hep.tu-darmstadt.de)

http://heplix.ikp.physik.tu-darmstadt.de/~ohl

June 12, 2000

Incremental Metapost Graphics for TEXPower:Using feynmf/feynmp and emp

Thorsten Ohl (mailto:ohl@hep.tu-darmstadt.de)

http://heplix.ikp.physik.tu-darmstadt.de/~ohl

June 12, 2000

Caveat Emptor: the version of emp currently on CTAN does not yet have

the empx environment required for these examples. Get the most recent

version from

ftp://heplix.ikp.physik.tu-darmstadt.de/pub/ohl/emp.

Incremental Metapost Graphics for TEXPower:Using feynmf/feynmp and emp

Thorsten Ohl (mailto:ohl@hep.tu-darmstadt.de)

http://heplix.ikp.physik.tu-darmstadt.de/~ohl

June 12, 2000

Caveat Emptor: the version of emp currently on CTAN does not yet have

the empx environment required for these examples. Get the most recent

version from

ftp://heplix.ikp.physik.tu-darmstadt.de/pub/ohl/emp.

These examples of incremental graphics for TEXpower are collected from

various talks and lectures that I had prepared originally with seminar.

Some of them are probably overusing TEXpower’s features, . . .

Contents

1 Blending Graphics With the Background 3

2 Incremental Feynman Diagrams SychronizedWith Equations 4

3 Incremental Metapost Boxes 5

4 Incremental Graphics Synchronized With Text 6

5 3D Metapost Synchronized With Equations 7

Contents

1 Blending Graphics With the Background 3

2 Incremental Feynman Diagrams SychronizedWith Equations 4

3 Incremental Metapost Boxes 5

4 Incremental Graphics Synchronized With Text 6

5 3D Metapost Synchronized With Equations 7

NB: all links point to the final version (step) of each page!

1 Blending Graphics With the Background

0 2 4 6

dσdΩ

ECM/TeV

Differential cross section

for e−νe → e−νe.

1 Blending Graphics With the Background

0 2 4 6

dσdΩ

Unitarity

ECM/TeV

Differential cross section and S-wave tree level unitarity bound

for e−νe → e−νe.

1 Blending Graphics With the Background

0 2 4 6

dσdΩ

Unitarity

ECM/TeV

Differential cross section and S-wave tree level unitarity bound

for e−νe → e−νe.

2 Incremental Feynman Diagrams SychronizedWith Equations

iT =

p1

p2

q1

q2

(1)

iT =

(2)

2 Incremental Feynman Diagrams SychronizedWith Equations

iT =

p1

p2

q1

q2

(1)

iT =

(2)

2 Incremental Feynman Diagrams SychronizedWith Equations

iT =

u(p1)

v(p2)

u(q1)

v(q2)

(1)

iT = v(p2) u(p1) u(q1) v(q2)

(2)

2 Incremental Feynman Diagrams SychronizedWith Equations

iT =

u(p1)

v(p2)

u(q1)

v(q2)

−ieγρ −ieγσ (1)

iT = v(p2)(−ieγρ)u(p1) u(q1)(−ieγσ)v(q2)

(2)

2 Incremental Feynman Diagrams SychronizedWith Equations

iT =−igρσ

(p1 + p2)2 + iε

u(p1)

v(p2)

u(q1)

v(q2)

−ieγρ −ieγσ (1)

iT = v(p2)(−ieγρ)u(p1)−igρσ

(p1 + p2)2 + iεu(q1)(−ieγσ)v(q2)

(2)

2 Incremental Feynman Diagrams SychronizedWith Equations

iT =−igρσ

(p1 + p2)2 + iε

u(p1)

v(p2)

u(q1)

v(q2)

−ieγρ −ieγσ (1)

iT = v(p2)(−ieγρ)u(p1)−igρσ

(p1 + p2)2 + iεu(q1)(−ieγσ)v(q2)

= ie2 1

s[v(p2)γρu(p1)] [u(q1)γρv(q2)] (2)

3 Incremental Metapost Boxes

Chiral symmetries in the standard model

SU(6)L ⊗ SU(6)R ⊗U(1)

3 Incremental Metapost Boxes

Chiral symmetries in the standard model broken by quark masses

SU(6)L ⊗ SU(6)R ⊗U(1)

SU(3)L ⊗ SU(3)R ⊗U(1)4

mt,mb,mc

3 Incremental Metapost Boxes

Chiral symmetries in the standard model broken by quark masses

SU(6)L ⊗ SU(6)R ⊗U(1)

SU(3)L ⊗ SU(3)R ⊗U(1)4

U(1)6

mt,mb,mc

mu, m

d, m

s

3 Incremental Metapost Boxes

Chiral symmetries in the standard model broken by quark masses and

electroweak interactions:

SU(6)L ⊗ SU(6)R ⊗U(1)

SU(3)L ⊗ SU(3)R ⊗U(1)4

SU(3)UL ⊗ SU(3)DL

⊗SU(3)UR ⊗ SU(3)DR ⊗U(1)

U(1)6

mt,mb,mc

mu, m

d, m

s

NC: γ, Z

3 Incremental Metapost Boxes

Chiral symmetries in the standard model broken by quark masses and

electroweak interactions:

SU(6)L ⊗ SU(6)R ⊗U(1)

SU(3)L ⊗ SU(3)R ⊗U(1)4

SU(3)UL ⊗ SU(3)DL

⊗SU(3)UR ⊗ SU(3)DR ⊗U(1)

SU(3)L ⊗ SU(3)UR ⊗ SU(3)DR ⊗U(1)U(1)6

mt,mb,mc

mu, m

d, m

s

NC: γ, Z

CC

:W±

3 Incremental Metapost Boxes

Chiral symmetries in the standard model broken by quark masses and

electroweak interactions:

SU(6)L ⊗ SU(6)R ⊗U(1)

SU(3)L ⊗ SU(3)R ⊗U(1)4

SU(3)UL ⊗ SU(3)DL

⊗SU(3)UR ⊗ SU(3)DR ⊗U(1)

SU(2)DL ⊗ SU(2)DR ⊗U(1)5

SU(3)L ⊗ SU(3)UR ⊗ SU(3)DR ⊗U(1)U(1)6

mt,mb,mc

mu, m

d, m

s

NC: γ, Z

CC

:W±

4 Incremental Graphics Synchronized With Text

∫ +∞

−∞dp0

e−ipx

p2 −m2(3)

The integral over the energy of the intermediate states in the complex

p0-plane

Imp0

Rep0

4 Incremental Graphics Synchronized With Text

∫ +∞

−∞dp0

e−ipx

p2 −m2(3)

The integral over the energy of the intermediate states in the complex

p0-plane encounters two poles at p0 = ±√|~p|2 +m2.

Imp0

Rep0

−√|~p|2 +m2

+√|~p|2 +m2

4 Incremental Graphics Synchronized With Text

∫ +∞

−∞dp0

e−ipx

p2 −m2(3)

The integral over the energy of the intermediate states in the complex

p0-plane encounters two poles at p0 = ±√|~p|2 +m2. These poles are circled

corresponding to Feynman’s boundary conditions.

Imp0

Rep0

−√|~p|2 +m2

+√|~p|2 +m2

4 Incremental Graphics Synchronized With Text

limε→0

∫ +∞

−∞dp0

e−ipx

p2 −m2 + iε(3)

The integral over the energy of the intermediate states in the complex

p0-plane encounters two poles at p0 = ±√|~p|2 +m2. These poles are circled

corresponding to Feynman’s boundary conditions. This pole prescription can

be expressed most concisely as a “+iε-prescription”.Imp0

Rep0

−√|~p|2 +m2

+√|~p|2 +m2

5 3D Metapost Synchronized With Equations

D = D1 ⊗D2 ⊗D3

5 3D Metapost Synchronized With Equations

D = D1 ⊗D2 ⊗D3

= (D(1)1 ⊕D(2)

1 ⊕D(3)1 )⊗D2 ⊗D3

5 3D Metapost Synchronized With Equations

D = D1 ⊗D2 ⊗D3

= (D(1)1 ⊕D(2)

1 ⊕D(3)1 )⊗D2 ⊗D3

= (D(1)1 ⊕D(2)

1 ⊕D(3)1 )⊗ (D(1)

2 ⊕D(2)2 )⊗D3

5 3D Metapost Synchronized With Equations

D = D1 ⊗D2 ⊗D3

= (D(1)1 ⊕D(2)

1 ⊕D(3)1 )⊗D2 ⊗D3

= (D(1)1 ⊕D(2)

1 ⊕D(3)1 )⊗ (D(1)

2 ⊕D(2)2 )⊗D3

= (D(1)1 ⊕D(2)

1 ⊕D(3)1 )⊗ (D(1)

2 ⊕D(2)2 )⊗ (D(1)

3 ⊕D(2)3 )

Recommended