GLIKOGÉN FOSZFORILÁZ GÁTLÁS - KFKIcheminfo/osztaly/felolvas/fo2012/... · 2011-12-27 ·...

Preview:

Citation preview

GLIKOGÉN FOSZFORILÁZ GÁTLÁS MONOSZACHARID SZÁRMAZÉKOKKAL

Somsák László

Debreceni Egyetem, Szerves Kémiai Tanszék

MTA Kémiai Tudományok Osztálya felolvasóülése

Budapest, 2011. dec. 13.

2010

http://www.diabetesatlas.org/map

2030 Prevalence of diabetes mellitus in the population (age: 20-79 years)

http://www.idf.org

2010

2030

http://www.diabetesatlas.org/map

Type 1 diabetes Total insulin deficiency Type 2 diabetes Impaired insulin secretion or insulin resistance

Prevalence of diabetes mellitus in the population (age: 20-79 years)

~5 %

~95 %

Current therapeutic agents for type 2 diabetes

Source: D. E. Moller, Nature, 2001, 414, 821-827.

Oral hypoglycaemic agents are inadequate for 30-40 % of the patients

(A. S. Wagman, J. M. Nuss, Curr. Pharma. Design, 2001, 7, 417-450)

Drug class Site(s) of

action Molecular target Adverse effects

Sulphonylureas Pancreatic

b-cells

SU receptor

K+ ATP channel

Hypoglycaemia,

weight gain

Metformin -

Biguanides

Liver

(muscle)

Unknown Gastrointestinal

disturbances,

lactic acidosis

Acarbose Intestine a-glucosidase Gastrointestinal

disturbances

Thiazolidinediones Fat, muscle,

liver

PPARg Weight gain,

oedema, anaemia

Insulin Liver,

muscle, fat

Insulin receptor Hypoglycaemia,

weight gain

Investigational targets/strategies for type 2 diabetes

Insulin Improving Combination SGLT-2

secretagogues insulin action therapies inhibitors

Strategies altering lipid metabolism Nutritional therapy

Inhibition of hepatic glucose production

Target Function

Glucagon Enhances hepatic glucose output

GCK Catalyzes the first step of glycolysis

6PF-2-K/F-2,6-P2ase Regulator of glycolytic and gluconeogenic rates

through production of F-2,6-P2

G-6-Pase Catalyzes the last step of gluconeogenesis

F-1,6-P2ase Regulates gluconeogenic rates

GSK3 Inhibits glycogen synthase

Glycogen phosphorylase Catalyzes the conversion of glycogen

to glucose-1-phosphate monomers

Source: Morral, N., Trends Endocrin. Metab., 2003, 14, 169-175.

Diseased states claimed to be affected by glycogen phosphorylase inhibitors

Type 2 diabetes mellitus

Early cardiac and cardiovascular disease

in non-diabetics (treatment and/or prevention)

Cardiac arrhythmias (stabilization)

Ischemic injury (protection)

Tumour growth (prevention)

Structure and binding sites of glycogen phosphorylase (rabbit muscle GP, RMGP) Figure by courtesy of E. D. Chrysina (Institute for Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Athens, Greece).

Reviews:

Oikonomakos,

Curr. Protein Pept. Sci.,

2002, 2, 561-586.

Somsák et al.,

Curr. Med. Chem.,

2008, 15, 2933-2983.

Thematic issue (Guest

editor: L. Somsák)

Mini-Rev. Med. Chem.,

2010, 10, 1091-1193.

Early glucose analogue inhibitors of RMGPb (Ki [mM])

Pioneered by Fleet, Johnson, and Oikonomakos

1700 7400

370 440

32 14

16 3

105 5

Review: Somsák et al., Curr. Pharma. Design, 2003, 9, 1177-1189.

O

HOHO

HO

OH

CH3

OPO3

O

OHHO

HO

OHHN CH3

O

O

HOHO

HO

OH HN OCH3

ONH2O

O

HOHO

HO

OH

NH

HN

O

O

O

HOHO

HO

OH

NH2O

O

OHHO

HO

OH

NH2

O

O

HOHO

HO

OH

HNNH

O

O

O

HOHO

HO

OH

OH

O

OHHO

HO

OH

OH

O

HOHO

HO

OH

NH

HN

S

O

Attempted synthesis of spiro-hydantoin analogues

Remy et al.,

Can. J. Chem.,

1980, 58, 2660-2665.

Descotes, G.

Bull. Soc. Chim. Belges

1982, 91, 973-983.

OO

RHO

(PGO)n

OO

R

O

(PGO)n

h

O

NH

HN

ORHO

O

NH

HN

ORHO

O

NH

HN O

R

O

O

NH

HN O

R

O

H

(PGO)n (PGO)n

(PGO)n(PGO)n

hO

NH

HN O

R

O

O

NH2

HN O

Spiro-hydantoins and benzoyl-urea are equipotent inhibitors of RMGPb

R = CH3 Ki = 305 mM

R = C6H5 Ki = 4.6 mM

X = O Ki = 3 mM

X = S Ki = 5 mM

Oikonomakos et al.,

Eur. J. Biochem. 2002, 269, 1684-1696.

O

HOHO

HO

OHHN

O

HN R

O

O

HOHO

HO

OH

NH

HN

X

O

Syntheses of N-substituted-N’-b-D-glucopyranosylureas and related compounds

O

OAcAcO

AcO

OAc

N3

O

OAcAcO

AcO

OAc

NH2

O

ORRO

RO

ORHN NH2

O

O

OAcAcO

AcO

OAc

NCO

O

OAcAcO

AcO

OAc

N C N R'O

ORRO

RO

ORHN

HN

R'

X

R = Ac, Bz H

R' = (a) alkyl, aryl, aralkyl, (b) alkanoyl, aroyl, arylalkanoyl

(Cl3CO)2CO, CH2Cl2, H2O, NaHCO3, r. t.

H2, Ra-Ni

R'NCX

PPh3, CO2, NH3,

EtOAc

R'NH2

R'(b)Cl

ZnCl2

1. PMe32. R'NCO H+/H2O

O HN

ORRO

RORO

HN

O

HN

O

O HN

ORRO

RORO

HN

O

HN

O O

O

OHHO

HOHO

NH2.HO2CNH2

O

OHHO

HOHO

OH

C10H7CONCO

NH4O2CONH2

MeOH

PhNHCONH2

X = O, S, Se

O

OAcAcO

AcO

OAcHN

O

Cl

OR'NH2 O

ORRO

RO

ORHN

O

NH

R'

OO

ORRO

RO

ORHN

O 2

+

(COCl)2

O

ORRO

RO

OR

CNNO2, CH2Cl2O

ORRO

RO

OR

CONH2O

ORRO

RO

OR

COOH

HBr, AcOH

NH

O

NH

O

PhNH

HN

O

Ph

O

O

ORRO

RO

ORO

ORRO

RO

OR

R'NCX

PhNCO (neat), reflux

PhCONHNH2, DCC, CH2Cl2, r. t.

Inhibition of RMGPb by N-acyl-N’-b-D-glucopyranosylureas

R Ki [mM] R Ki [mM]

–CH3 305 –H 4.6

15 –CH3 2.3

–C6H5 3.7

0.35 –CF3 1.8

–C(CH3)3 0.7

4.0 –NO2 3.3

–Cl 4.4

68 –NH2 6.0

–OH 6.3

No inhibition –OCH3 3.2

–COOH IC50 350

–COOCH3 4.0

O

OHHO

HO

OHHN

HN

O O

R O

OHHO

HO

OHHN

HN

O O

R

NH

N

Ar

linker Ki [mM]

NHCO 81 (144) 444 10

NHCONH 18 350 (IC50) 5.2

NHCONHCO 4.6 10 0.35

NHCONHCONH 21 - -

NHCONHCONHCO - - 45 %

(at 625 mM)

Influence of the linker length on the inhibition of RMGPb

O

OHHO

HO

OH

linker Ar

Ar

linker Ki [mM]

NHCONHCO 4.6 10 0.35

NHCONHCH2 750 - -

NHCOCH2CH2 85 - -

NHCOCH=CH 18 - 3.5

NHCOC≡C 61 - -

NHCOCH2O 34 - -

NHCOOCH2 350 - -

NHCOCH2NH 70 - 142

NHCONHCO 2.3

NHCONHSO2 No inh. (Ar = 4-CH3-C6H4)

NHSO2NHCO No inh.

Influence of the linker composition on the inhibition of RMGPb I.

O

OHHO

HO

OH

linker Ar

Ar

linker Ki [mM]

NHCONHCO 4.6 10 0.35

NHCOCONH 100 144 56

CONHCONH No inh. - -

CONHNHCO 22 %

(at 3.75 mM) - -

Influence of the linker composition on the inhibition of RMGPb II.

O

OHHO

HO

OH

linker Ar

Binding of N-acetyl-b-D-glucopyranosylamine at the active site of muscle GPb

Anagnostou, E. et al.,

Bioorg. Med. Chem.,

2006, 14, 181-189.

O

OHHO

HO

OHHN CH3

O

Ki = 32 mM

Binding of TH at the active site of muscle GPb

Oikonomakos et al.,

Bioorg. Med. Chem.,

2002, 10, 261.

Binding of N-benzoyl-b-D-glucopyranosylamine and N-benzoyl-N’-b-D-glucopyranosyl urea at the active site of muscle GPb

O

OHHO

HO

OHHN

O Ki = 81 mM

O

OHHO

HO

OHHN

HN

O O Ki = 4.6 mM

Interactions of N-benzoyl- and N-2-naphthoyl-N’-b-D-glucopyranosylureas in the b-channel of muscle GPb

Ki = 4.6 mM Ki = 0.35 mM

O

OHHO

HO

OH

NH

O

NH

O

O

OHHO

HO

OH

NH

O

NH

O

New N-b-D-glucopyranosyl derivatives tested as inhibitors of RMGPb

R

Gimisis, Mini-Rev. Med. Chem., 2010, 10, 1127-1138.

-CH3 -(CH2)2SCH3

Ki [mM] 510 1200 350

Alexacou et al., Bioorg. Med. Chem., 2010, 18, 7911-7922.

IC50 [mM] 33 5.7 28

O

OHHO

HO

OHHN

O

HN

COOH

R

F Cl

No H-bond between His377 main chain CO and N1-H.

O

OHHO

HO

OHHN

S

HN

N

HC

R1

O

HOHO

HO

OH

NH

HN

X

O

Novel design principle for inhibitors of GP

Ki = 0.35 mM

- rigid, spirobicyclic

stucture

- H-bridge

- interactions in the

b-channel

- lack of H-bridge

X = O Ki = 3.1 mM

X = S Ki = 5.1 mM

OX

ZO

HOHO

HOHO

R

OX

ZYHO

HOHO

HO

R

Leads:

X = O,S, NH Target

compounds:

O

HOHO

HO

OHHN

O

HN

O

O

HOHO

HO

O

N

HN

HN

O

H

H

His377

O

N R

O

HOHO

HO

O

N

HN

HN

OH

His377

O

HN

HN

O

b-channel

New spirocyclisation of (a-D-gluco-hept-2-ulopyranosyl-bromide)onamide

Somsák & Nagy, Tetrahedron-Asymmetry, 2000, 11, 1719-1724.

O

BzOBzO

BzO

OBz

Br

CONH2

O

BzOBzO

BzO

OBz

NH

HN

S

O

O

BzOBzO

BzO

OBz

NH

S

NH

O

O

HOHO

HO

OH

NH

S

NH

O

O

HOHO

HO

OH

NH

HN

S

O

O

BzOBzO

BzO

OBz

NH

S

N

O

NaOMeMeOH

r. t.

NaOMeMeOH

r. t.

CH3NO2, 80 oC

S8, N2 atm.

H2NCNH2

S

acetone, refluxor EtOH, MW

H2NCNHPh

S

DMF, 80 oC

conv. 72 %, yield 82 %

28 %

79 % 92 %

67 %

O

BzOBzO

BzO

OBz

OH

CONH2

By-product in each reaction:

NH4SCN,

Acylation of glucopyranosylidene-spiro-iminothiazolones

O

BzOBzO

BzO

OBz

NH

S

NH

O

O

HOHO

HO

OH

NH

S

N

O

NaOMeMeOH

r. t.

O

BzOBzO

BzO

OBz

NH

S

N

O

RRCl

dry Py, r. t.R

R = Yield (%) Yield (%)

Me-CO 76 N-deacylation to give

iPr-CO 81 unprot. thiazolone

tBu-CO 82 26

Ph-CO 84 58

1-Naphth-CO 73 56

2-Naphth-CO 89 50

4-Me-Ph-SO2 96 (conv. 95 %) 60

1-Naphth-SO2 91 (conv. 75 %)

2-Naphth-SO2 97 (conv. 76 %)

Alkylation of glucopyranosylidene-spiro-iminothiazolones

O

BzOBzO

BzO

OBz

NH

S

NH

O

O

HOHO

HO

OH

N

S

O

NaOMeMeOH

r. t.

O

BzOBzO

BzO

OBz

N

S

O

BrCH2CH2Br

N N

O

BzOBzO

BzO

OBz

N

S

O

N

O

HOHO

HO

OH

N

S

O

N

K2CO3, DMF, r. t.

NaOMeMeOH

r. t.

K2CO3, DMF, r. t.

BrCH2CH2CH2Br

67 % 48 %

70 % 48 %

Inhibition of RMGPb by glucopyranosylidene-spiro-iminothiazolone derivatives

O

HOHO

HO

OH

NH

HN

S

O

O

HOHO

HO

OH

NH

S

N

O

RR = H

S

OOO

O

O

O

O

HOHO

HO

OH

N

S

O

O

HOHO

HO

OH

N

S

ON N

Ki = 14 mM Ki = 137 mM Ki = 9 mM

Ki = 8 mM Ki = 4 mM Ki = 16 mM

47 % inhibition at 1 mM

No inhibition up to 1 mM

Ki = 5.1 mM

Binding of the spiro-iminothiazolone at the active site of RMGPb and comparison to spiro-thiohydantoin

Ki = 14 mM Ki = 5.1 mM

O

HOHO

HO

OH

NH

S

NH

O

O

HOHO

HO

OH

NH

HN

S

O

OSH

OAcAcO

AcOAcO

OS

AcOAcO

AcOAcO

Ar

NHO

O

RORO

RORO

O N

SAr

ArC(Cl)NOH NBS

Synthesis of glucopyranosylidene-spiro-oxathiazolines

94 36 78

79 69 71

79 30 65

90 46 90

Yields Ar

R = H R = Ac

H3CO

F

Somsák, Praly, et al., Bioorg. Med. Chem. Lett., 2008, 18, 5680-5683,

Bioorg. Med. Chem. 2009, 17, 5696-5707.

Attempted synthesis of a glucopyranosylidene-spiro-oxadiazoline

h

NBS, CHCl3

O N

O

AcOAcO

AcOAcO

ArN

O N

OH

AcOAcO

AcOAcO

ArN

2.

1. PMe3, PhCH3, CH2Cl2

NHO

ArCl

O

AcOAcO

AcOAcO

N3O

AcOAcO

AcOAcO

NH

NHO

Ar

Somsák, Praly, et al., Bioorg. Med. Chem. 2009, 17, 5696-5707.

Attempted synthesis of a glucopyranosylidene-spiro-oxadiazoline

h

NBS,

CHCl3

O N

NHO

AcOAcO

AcOAcO

Ar

O N

O

AcOAcO

AcOAcO

ArN

O N

OH

AcOAcO

AcOAcO

ArN

2.

1. PMe3, PhCH3, CH2Cl2

NHO

ArCl

O

AcOAcO

AcOAcO

N3O

AcOAcO

AcOAcO

NH

NHO

Ar

Somsák, Praly, et al., Bioorg. Med. Chem. 2009, 17, 5696-5707.

Synthesis of glycopyranosylidene-spiro-isoxazolines

O

ORRO

RO

OR

O

RORO

RO

OR

O NR'

O

ORRO

RO

OR

CN

O

RORO

RO

OR

O

RORO

RO

OR

O

R = Ac, Bz, Bn, Et3Si

H

NNHTs

Ra-Ni, TsNHNH2,

AcOH-H2O-Py, rt

2-ethanesulfonyl-benzothiazole, LiHMDS, -78 °C, DBU, THF

NaH

1,4-dioxane reflux

R'C(Cl)=NOH, Et3N,CH2Cl2, rt

Praly et al.,

Tetrahedron

Lett.

2006, 47,

6143-6147.

Tóth & Somsák,

J. Chem. Soc.

Perkin 1,

2001, 942-943.

Org. Biomol.

Chem.,

2003, 1, 4039-4046.

Carbohydrate

Chemistry: Proven

Synthetic Methods,

2011, in press. Praly et al.,

Bioorg. Med.

Chem.,

2009, 17,

7368-7380.

Inhibition of RMGPb (Ki [µM]) by glycopyranosylidene-spiro-heterocycles

R

26 19.6 no inh.

at 625 mM

7.9

8.2 6.6

0.16 0.63 no inh.

at 625 mM

O

HOHO

HO

OH

O N

SR

O

HOHO

HO

OH

O NR

O

HOHO

HO

O NR

Me

OMe

Somsák, Praly et al.,

Bioorg. Med. Chem. Lett.,

2008, 18, 5680-5683.

Bioorg. Med. Chem.,

2009, 17, 5696-5707.

Praly et al.,

Bioorg. Med. Chem.,

2009, 17, 7368-7380.

Modification of N-acyl-b-D-glucopyranosylamines by non-classical bioisosteres*

O

OHHO

HO

OHHN R

O

linker

linkers

N

N

N N

O

N N

N

O O

N

N

*Patani, G. A.; LaVoie, E. J., Chem. Rev., 1996, 96, 3147-3176.

Lima, L. M. A.; Barreiro, E. J., Curr. Med. Chem., 2005, 12, 23-49.

Synthesis of 1-D-glucopyranosyl-4-substituted-1,2,3-triazoles

OHOHO

OH

OH

NN

N

R

OHOHO

HO

OH

NN

N R

OHOHO

HO

OH

NN

N

R

CONH2

O

OAcAcO

AcO

OAc

N3

O

AcOAcO

AcO

OAc

N3

O

BzOBzO

BzO

OBz

N3

CONH2

R = CH2OH, COOEt(Me), Ph, 1-naphthyl, 2-naphthyl

1. R-C CH [1 eq in a) and b); 2 eq in c]

a) 0.015 eq CuSO4, 0.2 eq L-ascorbic acid, water, 70 °C

b) 0.075 eq CuSO4, 0.2 eq L-ascorbic acid, water, 70 °C

c) 0.11 eq CuSO4, 0.3 eq L-ascorbic acid, DMSO, 70 °C

2. NaOMe (cat), MeOH, rt

Bokor et al., Bioorg. Med. Chem. 2010, 18, 1171-1180.

OHOHO

OH

OHHN R

O

OHOHO

OH

OH

NN

N

HCR

Similarity of the amide moiety and the 1,2,3-triazole ring:

size, dipolar character, and H-bond acceptor capacity

(Angell & Burgess, Chem. Soc. Rev. 2007, 36, 1674-1689).

Binding of glucopyranosylamides and -1,2,3-triazoles at the catalytic site of RMGPb I.

O

OHHO

HO

OHHN

O

Ki = 151 mM O

OHHO

HO

OHHN

OO

OHHO

HO

OH

NN

N

Ki = 81 mM

Chrysina et al., Tetrahedron:

Asymm. 2009, 20, 733-740.

Ki = 13 mM

O

OHHO

HO

OHHN

O

O

OHHO

HO

OH

NN

N

Ki = 16 mM

Chrysina et al., Tetrahedron:

Asymm. 2009, 20, 733-740.

Binding of glucopyranosylamides and -1,2,3-triazoles at the catalytic site of RMGPb II.

R = OH R = F

6.1 3640

7.7 4010

46

170

76

O

OHR

HO

OH

N NH

O

O

O

OHR

HO

OH

N N

O

NH2

O

OHR

HO

OH

N N

O

HN

O

O

OHHO

HO

OH

N

N

NH

N

O

NH2

O

OHHO

HO

OH

N NH

NH

O

O

New N-b-D-glucopyranosyl heterocycles tested as inhibitors of RMGPb (Ki [mM])

Gimisis,

Mini-Rev. Med. Chem.,

2010, 10, 1127-1138.

Tsirkone et al.,

Bioorg. Med. Chem.,

2010, 18, 3413–3425.

Syntheses of C-glucopyranosyl-oxadiazoles

O

ORRO

RO

OR

O

ORRO

RO

OR

CN

NN

NHN

O

ORRO

RO

OR

O

NNR'

R'COClR = Ac, Bz, Bn H

O

ORRO

RO

ORHC NNHCOR'

R'COOH, DCC

Ra-Ni, NaH2PO2

R'CONHNH2

or

PhI(OAc)2

O

ORRO

RO

OR

N

ONR'O

ORRO

RO

OR

N

NOR'

O

ORRO

RO

OR

NH2

NOH

H2NOH

R'C(=NOH)Cl, Et3N

1. O-acylation2. cyclo- dehydration

R'CH(=NOH), NaOCl

or

Bu3SnN3

Me3SiN3, Bu2SnO

or

Tóth & Somsák, Carbohydr. Res., 2003, 338, 1319-1325.

Kun et al., Carbohydr. Res, 2011, 346, 1427-1438.

Tóth et al., Bioorg. Med. Chem., 2009, 17, 4773–4785.

Benltifa et al., Eur. J. Org. Chem., 2006, 4242.

Inhibition of RMGPb (Ki [µM]) by C-glucopyranosyl-oxadiazoles

R

-CH3 145 - no inh.

at 625 mM

10 %

at 625 mM 64

10 %

at 625 mM

10 %

at 625 mM 19

no inh.

at 625 mM

10 %

at 625 mM 2.4 38

O

OHHO

HO

OH

O

NNR O

OHHO

HO

OH

N

NOR O

OHHO

HO

OH

N

ONR

Tóth et al.,

Bioorg. Med. Chem.,

2009, 17, 4773–4785.

Benltifa et al.,

Eur. J. Org. Chem.,

2006, 4242.

Hadady et al., Arkivoc.,

2004, vii, 140-149.

Chrysina et al., Prot. Sci.,

2005, 14, 873-878.

Inhibition of RMGPb by homotrivalent glucose derivatives

Cecioni et al., New J. Chem. 2009, 33, 148-156.

O

HOHO

HO

OH

N

ON

OHO

HO OH

OH

N

O

N

O

OH

OHOH

HO

NO

N

O

HOHO

HO

OH

N

ON

O

HOHO

HO

OH

N

ON

OHO

HO OH

OH

N

O

N

O

OH

OHOH

HO

NO

N

N

N

N

N

N

NN

N

N

O

HOHO

HO

OH

N

ON

N N

N

10 %

at 625 mM No inh.

30 %

at 625 mM 35 %

at 625 mM

Inhibition of RMGPa by heterobivalent glucose-pentacyclic triterpene derivatives

Oleanolic acid (OA) R1 = H, R2 = H, R3 = CH3

Ursolic acid (UA) R1 = H, R2 = CH3, R3 = H

Maslinic acid (MA) R1 = OH, R2 = H, R3 = CH3

Acid R n IC50 [mM]

OA Ac - 337

OA H - 26

UA Ac - 51

UA H - 45

MA Ac - no inh.

MA H - 779

OA Ac 1 68

UA Ac 10 65

MA Ac 1 78

NN

N

O

HO

H

R1

R2

O

O OROR

ORRO

R3

NN

N

O

HO

H

R1 O

OOR

OROR

ROHN

O

n

R3R2

Cheng et al., New J. Chem. 2010, 34, 1450-1464.

Physiological effects of TH treatment in streptozotocin-induced diabetic rats

The results are the mean ± SD of four independent experiments.

Docsa et al., Mol. Med. Rep., 2011, 4, 477-481.

Intravenous

administration of

TH to Zucker

diabetic fatty rats

significantly

decreased

hepatic glycogen

phosphorylase a

levels, and the

activation of

synthase was

initiated without

any delay. Blood glucose Liver glycogen

O

HOHO

HO

OH

NH

HN

S

OTH

Summary

Glucose-derived compounds » N-acyl-N’-b-D-glucopyranosylureas » glucopyranosylidene-spiro-heterocycles (isoxazolines, oxathiazolines) » C-b-D-glucopyranosyl heterocycles having large aromatic substituents inhibit glycogen phosphorylase in the nanomolar range.

Further inhibitor design may focus on the interactions in the b-channel of the enzyme.

Physiological investigations show glucopyranosylidene-spiro-thiohydantoin to act towards normalizing serum glucose and liver glycogen levels in diabetic rats.

Organic synthesis

Dr. CZIFRÁK, Katalin

Dr. KOVÁCS, László

Dr. NAGY, Veronika

Dr. HADADY, Zsuzsa

Dr. TÓTH, Marietta

Dr. FELFÖLDI, Nóra

Dr. BOKOR, Éva

KRAKOMPERGER, Attila

TELEPÓ, Katalin

KÓNYA, Bálint

HÜSE, Csaba

KUN, Sándor

KÓDER, Lászlóné

Dr. PRALY, Jean-Pierre

Dr. VIDAL, Sébastien

Prof. Dr.

GYÖRGYDEÁK, Zoltán

Participants

Financial support: Hungarian Scientific Research Fund (OTKA CK77712), TÁMOP 4.2.1/B-09/1/KONV-2010-0007 project co-financed by the European Union and the European Social Fund.

Structure elucidation

Prof. Dr.

SZILÁGYI, László

Prof. Dr.

E. KÖVÉR, Katalin

(NMR)

Enzyme kinetics

Department of Medical

Chemistry, University

of Debrecen

Prof. Dr. GERGELY, Pál

DOCSA, Tibor

Protein crystallography Institute of Organic and Pharmaceutical Chemistry,

The National Hellenic Research Foundation,

Athens, Greece

Dr. CHRYSINA, Evangelia D.

Dr. LEONIDAS, Demetres D.

Dr. ZOGRAPHOS, Spyros E. and others

Dr. OIKONOMAKOS, Nikos G.

Recommended