ETPFGM'10-33

Preview:

Citation preview

  • 8/2/2019 ETPFGM'10-33

    1/4

    ETPFGM10

    48th European Two-Phase Flow Group Meeting 2010

    28th-30th June 2010, Brunel University, London, UK

    EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER IN

    FLOW BOILING INSIDE A HELICALLY COILED SMALL

    DIAMETER TUBE

    A. M. El-Sayed, R. K. AL-Dadah1, S. M. Mahmoud, D.K. Aspinwall, S. L. Soo

    School of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT.

    Helical coils were originally developed for commercial liquefaction of air, but currently are

    also used for boiling applications in petrochemical, cryogenic [1] and nuclear industries [2]. They

    are suitable for boiling in the absence of gravity such as in space applications where the radial

    acceleration imposed on the flow compensates the gravitational effect [1]. Additionally flow

    boiling in micro channels is becoming increasingly important in many applications involving

    devices used for cooling electronic processers and in compact refrigeration systems and heat

    exchangers. Research activity relating to boiling heat transfer of refrigerants inside helically coiled

    small diameter and micro tubes [3-4] which is relevant, is however limited. This paper initially

    reviews previous research and presents experimental data for flow boiling of refrigerant R134a

    inside helically coiled 4 mm diameter tubing.

    Figure 1 shows a schematic of the test facility which comprises a compressor, water cooled

    condenser, needle valve for controlling the refrigerant flow rate and water heated evaporator. The

    evaporator incorporated a helically coiled tube (pitch of 7mm and coil diameter of 30mm) fitted

    inside a cylindrical shell with an inside diameter of 50mm. Measurements of boiling pressure,refrigerant flow rate, refrigerant and water inlet/outlet temperatures and tube wall temperatures at

    different positions on the coil, were all monitored.

    Figure 2 shows the experimental average boiling heat transfer coefficients plotted against the

    heat flux of the helically coiled tube compared to those predicted by the Chen correlation [5], for a

    straight tube of the same diameter. The results showed that convective boiling was the dominant

    mechanism for heat transfer with little dependency on heat flux and the heat transfer coefficients

    varied with mass velocity (G). Furthermore, the coefficients for the coiled tube were higher than

    those of straight tubes. Figure 3 shows good agreement between the experimental results and those

    predicted using Schrock-Grossman and Guo correlations [6] for helically coiled tubes.

    References

    [1] Young, M. A. and K. J. Bell (1991). "Review of Two-phase flow and Heat Transfer

    Phenomena in Helically Coiled Tubes." American Institute of Physics: 1214-1222.

    [2] Nariai, H., Kobayashi, M., Matsuoka, T., Friction pressure drop and heat transfer coefficient of

    two-phase flow in helically coiled tube once through steam generator for integrated type marine

    water reactor.

    [3] Vashisth, S., V. Kumar, et al. (2008) "A review on the potential applications of curved

    geometries in process industry" Industrial Engineering Chemistry, 47, pp. 3291-3337.

    1 Contact author: Tel: 0121-4143513, Email: r.k.al-dadah@bham.ac.uk

    mailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.uk
  • 8/2/2019 ETPFGM'10-33

    2/4

    [4] Naphon, P. and S. Wongwises (2006) "A review of flow and heat transfer characteristics in

    curved tubes" Renewable and Sustainable Energy Reviews, 10, pp. 463490.

    [5] Chen, J.C. (1966) A correlation for boiling heat transfer to saturated fluids in convective

    flow, I & EC Process Design Develop, 5 (3), pp. 322329.

    [6] Zhao, L., Guo, Guo, L., Bai, B., Hou, Y., Zhang, X., Convective boiling heat transfer and two

    phase flow characteristics inside a small horizontal helically coiled tubing once-through steam

    generator, International Journal of Heat and Mass Transfer, 46, pp. 4779-4788.

    mailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.uk
  • 8/2/2019 ETPFGM'10-33

    3/4

  • 8/2/2019 ETPFGM'10-33

    4/4

    Figure 2 Variation of heat transfer coefficient with mass velocity and heat flux.

    Figure 3 Prediction of experimental results using Guo and Schrock-Grossman

    correlations.

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    0 1000 2000 3000 4000 5000

    Experimental Heat Transfer Coefficient [W/m2.K]

    Pre

    dictedHeatTransferCoefficient

    [W/m2.K

    ] Guo correlation [6]

    Schrock-Grossman correlation [6]

    +30%

    -30%

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    3000 4000 5000 6000 7000 8000

    Heat Flux [W/m2]

    HeatTransferCoefficient[W

    /m2.K

    ]

    G=60

    G=54

    Chen Correlation [5] (G=60 )

    Chen Correlation [5] (G=54)

    kg/m2.s

    kg/m2.s

    mailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.ukmailto:r.k.al-dadah@bham.ac.uk

Recommended