EKV3.0 model code & parameter extraction

Preview:

Citation preview

EKV3.0 model code &parameter extraction

Antonios BazigosNational Technical University of Athens, Greeceampazig@elab.ntua.gr

Matthias BucherTechnical University of Crete, Chania, Greecebucher@electronics.tuc.gr

EKV Users’ Meeting/WorkshopNovember 4-5, 2004, EPFL, Lausanne, Switzerland

Friday, 5 November 2004 EKV3.0 Workshop 2

Outline

! EKV3.0 Verilog-A code! Phenomena covered! Parameter extraction methodology! Illustration of model characteristics! Summary

Friday, 5 November 2004 EKV3.0 Workshop 3

The Verilog-A code at a glance

! The Verilog-A code of EKV3.0" Contained in one file “ekv3.va”" ~1400 lines (46KB)" ~50 intrinsic model parameters" BSIM4-like junction diode models & effects" Optional source/drain, gate, substrate resistors" Developed using ELDO and SPECTRE" Used as the reference code for all model implementations" ADMS is being used in order to obtain “standard” C code

versions for various simulators.

Friday, 5 November 2004 EKV3.0 Workshop 4

Verilog-A code vs. C code

! Verilog-A code of EKV3.0 has a brother in C code (ELDO)" Hand-coded for comparison with ADMS-created C

code" C code allows implementation of advanced aspects

(NQS, NQS noise) " Verilog-A and C codes otherwise have the same

functionality" Writing Verilog-A code is simpler but code is less

efficient (2-3 times slower than C).

Friday, 5 November 2004 EKV3.0 Workshop 5

if (f_x_res==1) beginVS=V(si,b); VD=V(di,b);

endelse begin

VS=V(s,b); VD=V(d,b);end

Choosing to use the internal nodes or not

Few, brief excerpts of the Verilog-A code of EKV3.0 1/2

module ekv3(d,g,s,b);inout d,g,b,s;electrical d,g,s,b;electrical di,si,gi,bi;

Defining external and internal nodes of the module

parameter real p_cox = 0.012 from (0.0:inf);parameter real p_xj = 20.0E-09 from (0.0:inf);parameter real p_vto = 0.3 from (-inf:inf);parameter real p_phi_f = 0.45 from [0.1:inf);parameter real p_gamma_b = 0.3 from (0.0:inf);parameter real p_gamma_g = 4.1 from (0.0:inf);

Defining parameters, default and acceptable values

Friday, 5 November 2004 EKV3.0 Workshop 6

Few, brief excerpts of the Verilog-A code of EKV3.0 2/2

//RSCELeff_o_LR = Leff/p_lr;one_lr = 1.0 - exp(-Leff_o_LR*Leff_o_LR);dvtrsce = 2.0*p_qlr*one_lr/(cox*Leff_o_LR*UT);

Calculating the ∆VTRSCE

I(b,g) <+ ddt(QB); Describing the AC behaviour of the transistor. QB is the charge related to the substrate node.

if (f_x_res==1) beginV(d ,di) <+ I(d,di)*rlx;V(s ,si) <+ I(s,si)*rlx;I(di,si) <+ IDS;

end else beginI(d ,s ) <+ IDS;V(di,b ) <+ 0.0; V(si,b) <+ 0.0;

end

Describing the external resistors. In case they are not used the internal nodes are grounded to bulk node.

Friday, 5 November 2004 EKV3.0 Workshop 7

Phenomena covered by EKV3.0 --Associated parameters 1/2

--NQS (AC, noise)

GAMMA2, VR, DVRNon-Uniform Vertical Doping

IBA, IBB, IBNImpact ionization currentKG, XB, UBGate currents (IGS, IGD, IGB)

LOV, GAMMAOV(NOV), VFBOVBias-dependent Overlap Capacitances

KP(U0), E0, E1, ETAZC, THC

Mobility (reduction due to vertical field effect) Covering: Surface Roughness, Phonon Scattering, Coulomb Scattering

COX(TOX), PHIF, GAMMA(NSUB), VTO(VFB), GAMMAG(NGATE)

Physical Modelling of Charges Including Accumulation RegionCovering Polysilicon Depletion and Quantum mechanical effects

Modelled effect Related parameters

Friday, 5 November 2004 EKV3.0 Workshop 8

Phenomena covered by EKV3.0 --Associated parameters 2/2

various parameters (7)Temperature Effects

Various parameters (DL, WQLR, …)Geometrical effects, Width scaling

LETA, LETA2, WETASource and Drain Charge Sharing

LR, QLR, NLRReverse Short Channel Effect

WR, QWR, NWRInverse Narrow Width Effect

ETAD, SIGMADDrain Induced Barrier Lowering

AF, KFNoise (Flicker / Thermal)

UCRIT(VSAT), LAMBDA,DELTA

Longitudinal Field EffectVelocity Saturation, Channel Length Modulation

TOTAL

Modelled effect Related parameters

~60

Friday, 5 November 2004 EKV3.0 Workshop 9

Basic parameter extraction methodology

CGG vs VG:COX, VTO,

GAMMA, PHIF, GAMMAG

CGG vs VG:COX, VTO,

GAMMA, PHIF, GAMMAG

gm vs VG (lin):DL, RSX

(fixing RSCE for correct VTO)

gm vs VG (lin):DL, RSX

(fixing RSCE for correct VTO)

ID vs VG (lin):LETA, [ETAD]

ID vs VG (lin):LETA, [ETAD]

VTO vs L:LR, QLR, NLR

RSCE,[LETA, LETA2,

ETAD]

VTO vs L:LR, QLR, NLR

RSCE,[LETA, LETA2,

ETAD]

CGG vs VG:LOV, GAMMAOV,[VFBOV], DLC

CGG vs VG:LOV, GAMMAOV,[VFBOV], DLC

Wide Long CVWide Long CV

Wide Long IVWide Long IV

Wide Short IVWide Short IV Wide All Lengths IV

Wide All Lengths IV

Wide Short CVWide Short CV

Narrow channel similar procedure

Narrow channel similar procedure

Narrow shortcombined effects

[fine tuning]

Narrow shortcombined effects

[fine tuning]

ΤΕΛΟΣ -- THE END -- FIN

gm vs VG (lin):KP, E0, E1,

[ETA]

gm vs VG (lin):KP, E0, E1,

[ETA]Width scaling:

All lengths w.r.t. width

Width scaling:All lengths w.r.t.

width

ID vs VG (sat):ETAD, [LETA]

ID vs VG (sat):ETAD, [LETA]

Id, gds vs VD [strong inversion]:

UCRIT,LAMBDA, DELTA

[weak inversion]:ETAD

Id, gds vs VD [strong inversion]:

UCRIT,LAMBDA, DELTA

[weak inversion]:ETAD

Temperature analysis

Temperature analysis

Friday, 5 November 2004 EKV3.0 Workshop 10

Refined parameter extraction methodology

CGG vs VG:COX, VTO,

GAMMA, PHIF, GAMMAG,[AQM]

CGG vs VG:COX, VTO,

GAMMA, PHIF, GAMMAG,[AQM]

gm vs VG (lin):DL, RSX

gm vs VG (lin):DL, RSX

ID vs VG (lin):LETA, [ETAD]

ID vs VG (lin):LETA, [ETAD]

VTO vs L:LR, QLR, NLR

RSCE,[LETA, LETA2,

ETAD]

VTO vs L:LR, QLR, NLR

RSCE,[LETA, LETA2,

ETAD]

CGG vs VG:LOV, GAMMAOV,[VFBOV], DLC

CGG vs VG:LOV, GAMMAOV,[VFBOV], DLC

Wide Long CVWide Long CV

Wide Long IVWide Long IV

Wide Short IVWide Short IV Wide All Lengths IV

Wide All Lengths IV

Wide Short CVWide Short CV

Narrow channel similar procedure

Narrow channel similar procedure

Narrow shortcombined effects

[fine tuning]

Narrow shortcombined effects

[fine tuning]

gm vs VG (lin):KP, E0, E1,[ETA]gm vs VG (lin):

KP, E0, E1,[ETA]

Width scaling:All lengths w.r.t.

width

Width scaling:All lengths w.r.t.

width

ID vs VG (sat):ETAD, [LETA]

ID vs VG (sat):ETAD, [LETA]

Id, gds vs VD [strong inversion]:

UCRIT,LAMBDA, DELTA

[weak inversion]:ETAD

Id, gds vs VD [strong inversion]:

UCRIT,LAMBDA, DELTA

[weak inversion]:ETAD

gm vs VG (sat):ZC, THC

gm vs VG (sat):ZC, THC

VP, n vs VG (lin):LETA

VP, n vs VG (lin):LETA

VP, n vs VG (lin):[GAMMA], [VTO]

VP, n vs VG (lin):[GAMMA], [VTO]

n0 vs L:LETA, LETA2

n0 vs L:LETA, LETA2

ΤΕΛΟΣ -- THE END -- FIN

Temperature analysis

Temperature analysis

Friday, 5 November 2004 EKV3.0 Workshop 11

Example parameter set for 0.12µm CMOS

+ LDW = 1.5n+ SIGMAD = 1+ WDL = 0+ ETAD = 0.41+ DW = -32n*** DIBL+ DL = -23n

+ VFBOV = 250m+ WETA = 450m*** Geometrical+ GAMMAOV = 2.5+ LETA2 = 0+ DELTA = 1.65+ LOV = 30.0n+ LETA = 385m+ LAMBDA = 0.2+ AQM = 0.5*** Overlap Caps*** Charge Sharing+ UCRIT = 3.6MEG***QM [fine tuning]+ TE1EX = 1.5+ NWR = 5.5m*** VSAT / CLM+ N0 = 1.04+ TE0EX = -15+ QWR = 470u+ THC = 0+ GAMMAG = 14+ TLAMBDA = 0+ WR = 80n+ ZC = 1.0+ GAMMA = 0.25+ UCEX = 0.8*** INWE+ ETA = 1.8+ PHIF = 0.5+ TETA = 6.25m+ NLR = 150m+ E1 = 380.0MEG+ VTO = 225m+ BEX = -1.8+ QLR = 2.8m+ E0 = 10.0G+ XJ = 20.0n+ TCV = 579u+ LR = 55n+ KP = 524u+ COX = 12.25m*** Temp params*** RSCE*** Mobility***General

Friday, 5 November 2004 EKV3.0 Workshop 12

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3VG [V]

CG

G /

(W*L

*CO

X) [-

]

Polysilicon depletion effectGAMMAG

GAMMAGGAMMAG 10 VGAMMAG 6 V

nmosW=10uL=10u

Friday, 5 November 2004 EKV3.0 Workshop 13

Quantum mechanical effectAQM

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3VG [V]

CG

G /

(W*L

*CO

X) [-

]

QM OFF;GAMMAGQM ON; GAMMAGQM ON; GAMMAG 6 V

nmosW=10uL=10u

Friday, 5 November 2004 EKV3.0 Workshop 14

Overlap CapacitanceGAMMAOV

0.0E+00

2.0E-08

4.0E-08

6.0E-08

8.0E-08

-3 -2 -1 0 1 2 3VG [V]

CG

I [F]

GAMMAOV 1.5 VGAMMAOV 1.0 VGAMMAOV 0.7 V

Dashed lines: Overlap capacitance

nmosW=10uL=120n

Friday, 5 November 2004 EKV3.0 Workshop 15

0.0E+00

2.0E-08

4.0E-08

6.0E-08

8.0E-08

1.0E-07

-3 -2 -1 0 1 2 3VG [V]

CG

X [F

]

Short-channel CV

CGG

CGB

CGD, CGS

nmosW=10uL=120n

Friday, 5 November 2004 EKV3.0 Workshop 16

0.0E+00

1.0E-06

2.0E-06

3.0E-06

4.0E-06

5.0E-06

6.0E-06

7.0E-06

8.0E-06

9.0E-06

0 0.5 1 1.5VG [V]

gm [m

ho]

0.0E+00

1.0E-06

2.0E-06

3.0E-06

4.0E-06

5.0E-06

6.0E-06

7.0E-06

8.0E-06

9.0E-06

0 0.5 1 1.5VG [V]

ID [V

]Transconductance factor

KP

nmosW=10uL=10u

V DS 50mV

KP 200uKP 150uKP 100u

Friday, 5 November 2004 EKV3.0 Workshop 17

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

0 0.5 1 1.5VG [V]

gm [m

ho]

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

0 0.5 1 1.5VG [V]

gm [m

ho]

Mobility reduction due to vertical field E0, E1, [ETA]

E0 1G; E1 600ME0 600M;E1 600 ME0 1G; E1 400ME0 600M;E1 400Mnmos

W=10uL=10u OX

bi

CQQE

EE

EE

η

µµ

+=

++

=

⊥⊥

2

10

0

1

V DS 50mV V DS 1.5V

Friday, 5 November 2004 EKV3.0 Workshop 18

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0.3 0.8 1.3

VG [V]

VP [V

]

1

1.05

1.1

1.15

1.2

1.25

1.3

-0.2 0.3 0.8 1.3

VG [V]

n [-]

Pinch-off voltage & slope factor GAMMA

VTO

1−

=

G

P

dVdVn

GAMMA 0.50 VGAMMA 0.35 VGAMMA 0.20 V

nmosW=10uL=10u

VP vs VG measurement setup.*IB biases the device to

moderate inversion

Friday, 5 November 2004 EKV3.0 Workshop 19

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

1.8E-03

0 0.5 1 1.5VG [V]

gm [m

ho]

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

1.8E-03

0 0.5 1 1.5VG [V]

gm [m

ho]

Leff & series resistance effectsDL, RS

DL 30nDL 20nDL 10n

RS 00.0µΩmRS 30.0µΩmRS 60.0µΩm

DLLL Drawneff +=

nmosW=10uL=120n

V DS 50mV

Friday, 5 November 2004 EKV3.0 Workshop 20

Velocity saturation & CLM effectsLAMBDA, UCRIT

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

4.5E-03

0 0.2 0.4 0.6 0.8 1VD [V]

ID [A

]

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 0.2 0.4 0.6 0.8 1VD [V]

gds

[mho

]

LAMBDA 0.5LAMBDA 0.3LAMBDA 0.1

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

4.5E-03

0 0.2 0.4 0.6 0.8 1VD [V]

ID [A

]

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 0.2 0.4 0.6 0.8 1VD [V]

gds

[mho

]

UCRIT 5.0MUCRIT 4.0 MUCRIT 3.0M

nmosW=10uL=120n

Friday, 5 November 2004 EKV3.0 Workshop 21

Scaling due velocity saturationDELTA, UCRIT, LAMBDA

0.4

0.5

0.6

0.7

0.8

0.9

1

1.00E-07 1.00E-06 1.00E-05 1.00E-04L [m]

IDSA

T / I

DSA

T0 [-

]

DELTA 2.0;UCRIT 3.1MEG ;LAMBDA 0.25DELTA 1.7;UCRIT 3.5 MEG;LAMBDA 0.20DELTA 1.0;UCRIT 5.0 MEG;LAMBDA 0.12

Friday, 5 November 2004 EKV3.0 Workshop 22

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

-0.2 0.3 0.8 1.3

VG [V]

VP [V

]

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

-0.2 0.3 0.8 1.3

VG [V]

n [-]

Pinch-off voltage & slope factorLETA

1−

=

G

P

dVdVn

nmosW=10uL=120n

LETA 0.0LETA 0.5LETA 1.0

Friday, 5 November 2004 EKV3.0 Workshop 23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.0E-06 1.0E-04 1.0E-02 1.0E+00 1.0E+02ID/ISPEC [V]

gms*

UT/

ID [-

]

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 0.5 1 1.5

VG [V]

ID [A

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.0E-06 1.0E-04 1.0E-02 1.0E+00 1.0E+02ID/ISPEC [V]

gmg*

UT/

ID [-

]

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

-0.2 0 0.2 0.4 0.6 0.8 1

VS [V]

ID [A

]

DIBL effectETAD, [SIGMAD]

V GB 0.25VV GB 0.50VV GB 0.75VV GB 1.00V

V SB 0.0VV SB 0.2VV SB 0.4VV SB 0.6V

V DB 1.5V

nmosW=10uL=120n

ETAD=0 (Dashed lines)ETAD=1 (Solid lines)

Friday, 5 November 2004 EKV3.0 Workshop 24

DIBL effect on gdsETAD, [SIGMAD]

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 0.2 0.4 0.6 0.8 1VD [V]

gds

[mho

]

ETAD=0 (Dashed lines)ETAD=1 (Solid lines)

nmosW=10uL=120n

V GB 1.00VV GB 0.75VV GB 0.50VV GB 0.25V

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

1.2E-02

1.00E-11 1.00E-09 1.00E-07 1.00E-05 1.00E-03

ID [A]

gds*

UT/

ID [-

]ETAD 0.75ETAD 0.70ETAD 0.65ETAD 0.60

Friday, 5 November 2004 EKV3.0 Workshop 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.00E-07 1.00E-06 1.00E-05L [m]

VT [V

]Reverse short channel effect

QLR

QLR 0.8e-3QLR 0.6e-3QLR 0.4e-3

VSB= 0.0V

VSB= 0.2V

VSB= 0.4V

DIBL, CS RSCE

LRL

C

eQLR

Veff

OX

LRL

T

eff

−⋅⋅

=∆

2

12

Friday, 5 November 2004 EKV3.0 Workshop 26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.00E-07 1.00E-06 1.00E-05L [m]

VT [V

]Reverse short channel effect

NLR

NLR 30.0e-3NLR 20.0e-3NLR 10.0e-3

1

1.05

1.1

1.15

1.2

1.25

1.3

1.00E-07 1.00E-06 1.00E-05L [m]

n0

VSB= 0.0V

VSB= 0.2V

VSB= 0.4V

LRL

C

eNLR

effOX

LRL

BB

eff

−⋅⋅

+⋅Γ=′Γ

2

12

1

Friday, 5 November 2004 EKV3.0 Workshop 27

Reverse short channel effect LR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.00E-07 1.00E-06 1.00E-05L [m]

VT [V

]

LR 300nmLR 200nmLR 100nm

VSB= 0.0V

VSB= 0.2V

VSB= 0.4V

Friday, 5 November 2004 EKV3.0 Workshop 28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.00E-07 1.00E-06 1.00E-05L [m]

VT [V

]Charge sharing

LETA

LETA 0.3LETA 0.6LETA 0.9

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.00E-07 1.00E-06 1.00E-05L [m]

n0

VSB= 0.0V

VSB= 0.2V

VSB= 0.4V

Friday, 5 November 2004 EKV3.0 Workshop 29

Threshold voltage vs. W & L

Friday, 5 November 2004 EKV3.0 Workshop 30

Slope factor vs. W & L

Friday, 5 November 2004 EKV3.0 Workshop 31

Summary

! EKV3.0 code is developed in Verilog-A" Verilog-A is the main platform of code development" Code tested in various simulators, among which ELDO &

Spectre.! A basic methodology of extracting EKV3.0

parameters has been presented" Methodology is similar over many CMOS generations" Effects of main EKV3.0 parameters on DC and CV

characteristics have been illustrated.

Thank you very much for your time and attention

Recommended