Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty...

Preview:

Citation preview

Dynamics of Vibrational Excitation Dynamics of Vibrational Excitation in the Cin the C60 60 - Single Molecule - Single Molecule TransistorTransistor

Aniruddha Chakraborty

Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore-560012, India. http://www.ipc.iisc.ernet.in/~anirud

Plan of the talk

1. What is C60 - single molecule transistor?

2. Experimental results

3. Our work

4. Conclusions

Park et al. Nature 497, 57 (2000).

C60 - Single Molecule Transistor

C60 molecule

Sphere, diameter 0.7 nm.12 pentagons and 20 hexagons.

Park et al. Nature 497, 57 (2000).

Current Vs Voltage Plot at 1.5K

Conductance gap

Asymmetric

Different step heights

5 meV

‘Two photon’ Process

Center of mass motion

En

ergy

(0,0)(0,1)(0,2)(0,3)

Voltage

Cu

rren

t

(0,0

)

(0,1

)

(0,2

)

En

ergy

Nuclear Coordinate

d

d

Lennard-Jones potential for Au-C interaction:

Theoretical analysis by Park et al.

Lennard-Jones+Coulomb

Park et al. Nature 497, 57 (2000).

Center of mass motion

En

ergy

Chem. Phys. Lett. 214, 569 (1993)

Lennard-Jones

Hollow sphere

Carbon atoms smeared into a continuum

Coulomb interaction

Extra electron is uniformly distributed

Point charge at the center

Why not internal vibrational excitation?Lowest energy mode: 33meV

Why Not?

Why not electronic excitation?Very high energy

Why not rotational excitation?No net dipole moment

Theoretical Analysis by Boese et al.

Boese et al. Europhys. Lett. 54, 668 (2001).

Local system + Bosonic Bath+two electronic reservoirs

Local system= quantum dot+ harmonic oscillator

The Model

Perturbation (electron hopping)

‘Two photon’ Process (Resonance Raman Spectroscopy)

Perturbation (Light)

Kramers-Heisenberg-Dirac formula

Second order Perturbation theory

C60 - Single Molecule Transistor

L

The HamiltonianThe Hamiltonian

Internal vibrational modes of C60 are not considered.Position dependence of LUMO energy is neglected.

PerturbationPerturbation(electron hopping)

Center of mass motion

En

ergyGeometry independent.

Kramers-Heisenberg-Dirac type formula

*Boese et al. Europhys. Lett. 54, 668 (2001).

Temperature effect neglected1.5K =0.13 meV

(a) The displacement of the (a) The displacement of the equilibrium position

Contributing factors to the vibrational excitation

(b) The position dependence of the (b) The position dependence of the electron hopping matrix element

trapped between gold electrodesC60

No experimental information available

Van der Waals interaction between C60 and Au electrode

*Buckingham potential for Au-C interaction

*Acknowledgement: Hao Tang (CEMES/CNRS, France).

6 8 10 12 14

-0.5

0.0

0.5

En

ergy

( e

V )

Chem. Phys. Lett. 214, 569 (1993)

Hollow sphereCarbon atoms smeared into a continuum

Metal assumed to form a continuum

Van der Waals interaction:C60 trapped between gold electrodes

Ene

rgy

Center of mass motion

Approximate Potential

Analysis by Park et al.

Choice of dBest distance – maximum binding energy

Classical Electrodynamics: J. D. Jackson; 3rd ed. (1999).

Image interaction

Hollow sphereCarbon atoms smeared into a continuum

Extra electron is uniformly distributed

Point charge at the center

Force Calculation (convergent Series)

Images placed at larger and larger distances.

d

d

Center of mass motion

En

ergy

Analysis by Park et al.

Approximate Potentials

Current Vs Voltage Plot

0 5 10 15 200

2

4

6

8

Voltage (meV)

Cu

rren

t (a

rb. u

nit

s)

Qualitative agreement !

Van der Waals interaction between C60 and Gold electrode

9 11 13 15 17

-0.25

0.0

0.25

0.5

En

ergy

( e

V )

Hollow sphere

Carbon atoms smeared into a continuum

Metal assumed to form a continuum

Larger radius – effect of protrusion is lessSmaller radius – C60 won’t stable on top

Van der Waals interaction: CVan der Waals interaction: C6060 trapped between Gold electrodestrapped between Gold electrodes

En

ergy

Center of mass motion

Analysis by Park et al.

Choice of dBest distance – maximum binding energy

Image Interaction

Classical Electrodynamics: J. D. Jackson; 3rd ed. (1999).

Hollow sphereCarbon atoms smeared into a continuum

Extra electron is uniformly distributed

Point charge at the center

= +

32760 images

Image Interaction

Force Calculation (convergent Series)

Images from reflection between parallel electrodes : placed at larger and larger distances.

With each reflection the images change sign.

Each reflection on the sphere, reduces the images change.

generated from a set of SIX successive reflections

seven

five

Approximate Potentials

d

d

Center of mass motion

En

ergy

Analysis by Park et al.

0 5 10 15 200

2

4

6

8

Voltage (meV)

Cu

rren

t (a

rb. u

nit

s)

Current Vs Voltage Plot

Qualitative agreement !

0 5 10 15 200

2

4

6

8

Voltage (meV)

Cu

rren

t (a

rb. u

nit

s)

Current Vs Voltage Plot

Qualitative agreement !

Contribution from hopping matrix element

Voltage

Cu

rren

t

(0,0

)

(0,1

)

(0,2

)

(0,3

)

Electrode geometry & hopping matrix element

Voltage

Cu

rren

t

(0,0

)

(0,1

)

*Boese et al. Europhys. Lett. 54, 668 (2001).

Only Qualitative Agreement !

Double well problem!

Internal modes! En

ergy

Center of mass motion

Conclusions

1. Two possible mechanisms for vibrational excitation.

2. Our results are in qualitative agreement with experiment.

A. Chakraborty, K. Kumar and K. L. Sebastian, Phys. Rev. B 68, 085411 (2003).

(a) The displacement of equilibrium position

(b) The position dependence of the electron hopping matrix element

A. Chakraborty, Chapter 2, Ph.D thesis, IISC, Bangalore, India, 2005.

Prof. K.L. Sebastian

Hao Tang

Keshav Kumar ( University of Pennsylvania, USA )

( CEMES/CNRS, France )

CSIR ( New Delhi, India )

AcknowledgemenAcknowledgementsts

( Indian Institute of Science, India )

Recommended