DO WTI OIL PRICE MOVEMENTS FOLLOW A MARKOV...

Preview:

Citation preview

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page1

CONN VALUATION SERVICES LTD.

DOWTI OIL PRICEMOVEMENTSFOLLOWAMARKOVCHAIN?

ByRichardR.ConnCMA,MBA,CPA,ABV,ERP

Thispaperisthefirstinatwo‐partserieswhichis,ultimately,dedicatedtooutliningamethodologyforpredictingfutureoilpricesusingMarkovproperties.Farfrombeinguniqueorinnovative,therehavebeenmanyexcellentacademicworksonthissubjectalreadywritten(seeReferences).However,thedifficultywithacademicpapersisthattheyaretypicallywrittenfortheacademiccommunityandnottheaveragepractitioner.Thispaperissquarelyaimedatprovidingthetypicalfinancialanalyst(whoalreadyhasarudimentaryunderstandingofmatrixalgebraandthebasicqualitiesofMarkovprobabilities)withanoverviewofcreatingaWTI(WestTexasIntermediate)MonteCarlo‐styledoilpricepredictionmodel.

Theprimarydifferencebetweentheapproachtakenherecomparedwiththeacademicpapersisthatthefocusofthisserieswillbeuponforecastingthefuturestatesoftheoutcomes(i.e.directionallythestepsinvolvedingettingfromthecurrentWTIleveltosomefuturepredictionofWTI)comparedwithestimatingthefuturepricelevelofWTI.Mostoftheacademicpapersareintentuponestimatingwhetherfutureoilpricewillbehigherorlowerthancurrentpricesand,ifso,buthowmuch.We,instead,willbeinterestedinpredictingtherandomwalkthatWTIislikelytotakebetweennowandthelong‐termforeseeablefutureratherthanuponattemptingtoestimatethesizeofeachofthosesteps(i.e.themagnitudeofthepricechangeateachpointintime).Onlyafterwehavedevisedapaththatfutureoilpricemovementsarelikelytofollowwillweturnourattentiontothequestionofestimatinghowlargeeachofthosepricechangesreasonablycanbeexpectedtobe.Thepracticalityofthisapproachwillbecomeevidentasthemethodologyisunveiled.

ANOVERVIEWOFTHEMECHANICS

Whiletheexplanationwillbetedious,thedetailsofwhattheMarkovpropertiesareandwhytheyareimportanttothemovementsofoilpricesisunavoidable.Atthesametime,aslittlespaceaspossiblewillbededicatedtowardstheunderlyingtheory–thisseriesisdedicatedtowardscomingupwithapracticalandworkingmodel.

MarkovChainsareprobabilisticmodels/observationsaboutmovementswithinastatespace.Consideringthemovementofoilprices(andweshallonlyconcernourselveswiththemovementofWTI)thereareonlythreestates.Attheendofanygivenday,forexample,theWTIpricecouldhavemovedup,moveddownorstayedthesame,relativetotheclosingpriceofthepreviousday.Thislatterstatewouldbedescribedasa‘loop’–thepriceloopedbacktowhereitwassuchthatthenew‘state’isthesameastheold.

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page2

CONN VALUATION SERVICES LTD.

Suchanobservationshouldleadtheanalyticallycurioustothequestion:‘WithwhatfrequencyhaveWTIpricesincreasedinthepastrelativetohowoftentheyhavedeclinedorremainedthesame?’BeingabletoanswerthisquestionmayleadtobeingabletomakebetterpredictionsaboutthefuturepathofWTIprices.IfweabbreviatesuchmovementsasD,S,UforDown,Same,Uprespectively,thenwehaveashorthandmeansofquicklysymbolizinglongstringsorchainsofpricemovements.If,forexample,wearedescribingasequenceofpricechangesoversixdays(i.e.fivemovements)asDDSUD,then,thatmeanstheSeconddayendingpricewasDownfromthefirst;theThirdwasDownfromthesecond;theFourthwastheSameastheThird;theFifthwasUpfromtheFourth;andfinallytheSixwasDownfromtheFifth.

TheprimarycharacteristicofMarkovianmovementsbetweenthevariousstatesisthatonlythecurrentpositionwithinthestatespaceisinanywayrelevanttothenextmovement.Intheexampleabove,ifweareattemptingtopredictwhereWTIwillbeattheendofDaySeven(eitherD,S,orUrelativetoDaySix),theonlyinformationthatisusefulinmakingthatpredictionisthatDaySixendedasa“D”day.ThefactthatthepreviousfourmovementspriortoDaySixwereDDSUinnowayimprovesourstatisticalchancesofcorrectlyestimatinghowDaySevenwillend.AnotherwaytosaythisisthatXXXXDD(whereDaySevenendsasa‘Down’Day,forexample)hasjustasmuchprobabilityofoccurringasDDSUDDorUUUUDDorUSDSDDoranypermutationwhereXXXXrepresentsanyrandomstringof“D”,”S”,”U”(andthemathematicallyastutewillrecognizethatthereare3^4=81permutationspossiblehere).InotherwordsthehistoryorpaththatWTIpricestookbeforearrivingattheDofDaySixhasnobearinguponthedirectionthatpriceswilltakeonDaySeven.AnotherwayofsayingthisisthatthepricemovementonDaySeveniscompletelyindependentofthedirectionofthepricemovementsatanytimepriortoDaySix.

WhyshouldwecareifWTIpricesexhibitMarkoviancharacteristics?Because,ifWTIpricesareindependentofthepathupontheytooktogettothecurrentstateANDwecanidentifyordetermineaprobabilityforwhichstatetheymightnextmoveto,thenthiswillquiteeasilyallowustobuildasimpleprobabilisticmodelforpredictingwhereWTIpricesmaybegoing.Conversely,if

CurrentWTIPrice

FIGURE1

NewHigherPrice(U)

NewLowerPrice(D)

PriceStaysSame(S)

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page3

CONN VALUATION SERVICES LTD.

WTIpricesarepathdependent,thenthelevelofcomplexityinvolvedincalculatingwheretheycannextbeexpectedtomovetoincreasesexponentially.Imagine,forexample,thatitisnowDaySixwhichhasendedasaDDayandtheprobabilityofwherepricemayendtomorrowisdependentuponthepathpricestookinthepreviousfivedays(i.e.thefourpricemovementspriortothe“D”ofDaySix).Thatwouldmeanthateachofthepossible81differentpricepathsthatmayhaveoccurredinthelastfivedayscouldhaveitsownuniqueprobabilityindeterminingwherepricemovestoonDaySeven.Andnowimaginehowcomplexitmaybetopredictpricemovementsiftomorrow’spricewereinsomewaydependentuponwhichpricepathhadbeentakenovertheprior50or100or1,000tradingdays?Thatwouldbe3^49or3^99or3^999possiblepermutationsrespectively–numberstoolargetocomprehend,muchlessassignprobabilitiesto.

SowewantWTIpricemovementstopossessMarkoviancharacteristics,butwecannotsimplyassumethattheydo.SomeformaltestprocedureneedstobeappliedtoempiricalWTIhistoricdatainordertoassessifthosemovementshavefollowedaMarkovchain(i.e.arepathindependent)

ANINTUITIVEAPPROACH

EvenbeforeconsideringamorerigorousapproachthatinvolvestheuseofmatrixalgebraandtheChi‐squaretest,thereisanintuitiveapproachthatshouldallowustosetalower‐boundaryabouttheprice‐pathdependencyofhistoricWTIpricemovements.WhilethisinformalmethodwillnotallowustoabsolutelyconcludethatWTIpricemovementsdofollowaMarkovchain,itwillalertusintheeventthattheyclearlydonot.

IfWTIpricemovementsareMarkovianandprice‐pathindependent,thenitisonlythecurrentstatethathasanybearinguponwherepricewillmovenext.Thismeansthat,selectingasub‐sampleof,sayDD,pricemovementsfromaverylargesampleofWTIpricehistorywewouldexpecttofindthesamerelativefrequencyofDDpricechainsastheoccurrenceofXDDpricechains.Thatis,giventhattheprobabilityforpricestodeclinetwiceinsuccession(whichnecessarilywouldrequirea3dayobservationperiod),wewouldexpecttofindthesameprobabilityforanXDDpricechaintooccuroverafourdayobservationperiod(wherethe“X”couldrepresenteitheraUp,DownorSamemovement).Ifthiswerenotthecase,thenonemightbegintosuspectthatprice‐pathhadsomebearinguponwhatcoursethethirdpricemovementtook.

Expandingthislogic,ifposthocWTIpricemovementsareprice‐pathindependent,wewouldexpectXXDDtooccurwiththesamerelativefrequenciesasDDchains.And,similarly,XXXXXXXDDtendayobservationsshouldoccurwiththesamefrequencyandsoshouldone‐hundred‐daychainsendinginDDoccurinjustthesamefrequency.1

1Thecaveathereisthatwearespeakingaboutrelativefrequency.If,forexample,oursubsampleis1,001dayslong,thereare1,000chainsoflengthtwopossible.Thisisbecause,onthefirstday,thereisnomovement,soittakestwodaysuponwhichtoobservethefirstmovement.Sequentially,then1,000two‐periodchainscouldbeobservedovera1,001daysubsample.Ifnisthenumberofdaysinthesubsample,andkisthelengthofthechain,then,n‐(k‐1)=numberofchainspossible.Therefore,1,001–(2–1)=1,000.Similarly,ifwewanttoobservethefrequencyoflengththreechains,nowtherewouldonlybe1,001–(3–1)=999chainspossible.InthatcasewemaybemeasuringtheratioofXDDchainsthatoccurover999possible

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page4

CONN VALUATION SERVICES LTD.

EIAEMPIRICALEVIDENCE:TheU.S.EnergyInformationAdministration(EIA)maintainsalargedatabaseofhistoricalWTIprices(spotprices,measuredatCushing,OK)andmakesthatavailableforeasydownloadineither,daily,weeklyormonth‐endform.ThatdatabasebeginsonJan.2,1986andthereforeincludesapproximately7,100tradingdayobservationsuptopresentday(thispaperwaswritteninearlyMay,2014).Bydrawingourconclusionsfroma28yearsample,weareimplicitlyconditioningourresultstobelong‐termedinnature.Anysingle‐eventWTIpriceshockthathasoccurredsinceJanuary1986will,tosomeextent,bereflectedinthedata–buttemperedbythelong‐termstatusquo.Similarly,anyshortormid‐termcyclesthattheWTIhasexhibitedwillbesomewhatmitigatedinourresults.Hadwewantedtoconstructamid‐termestimatorofWTIprices,wewouldhavebeenfacedwiththedifficultyofdecidingwhichportionofthehistoricdatabestreflectedtheexpectedcharacteristicsoftheforthcomingmid‐term.Wewill,however,examinethedataforshortandlong‐termvolatility,withtheintentofidentifyinganypermanenttransitionsthatmayhaveoccurredovertime.Butwewillnotdosountilafterourobservationsaboutfrequencyhasbeenpresented.

outcomes.Similarly,achainoflength100(i.e.wouldrequire101observationdays)couldonlypossiblyoccur1,001–(100–1)=902inthissubsampleandthereforeitwouldbefrequencyofthenumberlength100chainsendinginDDrelativetothe902possibleoutcomesofachainthislengththatwouldprovidetheimportantstatisticinthiscase.

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page5

CONN VALUATION SERVICES LTD.

TABLE1:FREQUENCYOF‘XX’ENDINGCHAINSINEIADATA

Two Day Chains:

Day n Observation

D S U

Day (n + 1) Observation

D 22.11% 0.71% 24.63%

S 0.83% 0.07% 0.84%

U 24.50% 0.95% 25.37%

Ten Day Chains:

Day n Observation

D S U

Day (n + 1) Observation

D 22.10% 0.71% 24.63%

S 0.83% 0.07% 0.84%

U 24.50% 0.95% 25.37%

One-Hundred Day Chains:

Day n Observation

D S U

Day (n + 1) Observation

D 22.03% 0.71% 24.67%

S 0.82% 0.07% 0.84%

U 24.54% 0.95% 25.37%

One-Thousand Day Chains:

Day n Observation

D S U

Day (n + 1) Observation

D 22.49% 0.60% 24.67%

S 0.65% 0.08% 0.72%

U 24.61% 0.76% 25.42%

Lookingfirstatthe2DayChaindata,attheintersectionofDD,thistellsusgivenallthepossible2daychainsthatcouldhavebeenobservedintheEIAdata(therewere7,143)22.11%ofthetimeaDownmovementonDaynwasfollowedbyasubsequentDownmovement(i.e.DD)onDayn+1.Similarly,25.37%ofthetimeanUpmovementwasfollowed,onthenextday,byanotherUpmovement(i.e.UU).Movingtothedatarepresentingthe1,000daychainswefindthat,ofallthepossible1,000daychainsthatcouldhavebeenobservedinthatdata(ofwhichtherewere7,144–(1000–1)=6,145uniqueobservations),weseeverysimilarstatisticsasthein2Dayobservations.Thereisroughlya22.5%chanceofobservinga1,000daychainthatendsinDD.Thereisonlyasixth‐tenthsofone‐percentchanceofobservinga1,000daychainthatendsinSD.And,thereisapproximatelya25.4%chanceofa1,000daychainendinginUU.Theseareverysimilarnumberstotheobservationsinthe2daychainswhichare,inturn,veryclosetothosestatisticsobservedwiththe10daychains

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page6

CONN VALUATION SERVICES LTD.

andthe100daychains.Hadweobservedadramaticallychangingstatisticasthechainsgotlonger,wemighthavebeguntosuspectthattheWTImovesinaprice‐pathdependentmanner.Butthedailyoutcomes2haveremainedremarkablyconsistentregardlessofthelengthofthechain,thereforeitisappropriatetodosomemoreformaltesting.

MARKOVPROBABILITIESINMATRIXFORM

ItisconvenienttopresentMarkovsingle‐stagedatainMatrixform.Foreaseofexposition,wewillspeakofthedailypricemovementswhenexplainingthemethodology,butlatertheweeklyobservationswillalsobepresentedandcomparedtothedaily.Therearetwopresentationalternativespossible(oneisthetranspositionoftheother)andafewwordsonMatrixprotocolareprobablyinorder.

FIGURE2

Day n Observations

Down Same Up

Day (n +1) Observations

Down DD SD UD

Same DS SS US

Up DU SU UU

100% 100% 100%

Day (n + 1) Observations Down Same Up

Day n Observations

Down DD DS DU 100% Same SD SS SU 100%

Up UD US UU 100% Thedifferencebetweenthetwopresentationsabovedealswithwhetherweareidentifyingthe‘Dayn’observationsasrowsandthe‘Dayn+1’observationsascolumns,ortheotherwayaround.Theconventionusuallyistheformer,‘Dayn’arerows,‘Dayn+1’arecolumnsand,asaresult,thetotalofeachrowsumsto100%.Thedifferencebetweenthetwoisamatterofpersonalpreference,butitisimportanttokeepinmindthatthestatisticweareinterestedinisthatgiventhatweareatcurrentstateXasat‘Dayn’,wewishtoknowtheprobabilityofmovingtostateXon‘Dayn+1’.Forexample,giventhatwehaveobserveda‘DState’on‘Dayn’weareinterestedinlearningthe

2ForreasonsofspacetheweeklystatisticswillnotbepresentedherebyreservedforAppendix1.Similartothedailystats,thereisagooddealofconsistencymovingbetweenthelengthsofchains.OnenotabledistinctionbetweentheDailyandWeeklyobservationswasthatitwasnoticeablymorelikelyforatwo‐weekchaintofinishonaUU(about30%ofthetime),thanitwasforatwo‐daychaintodoso(onlyabout25%ofthetime).

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page7

CONN VALUATION SERVICES LTD.

frequencywithwhichthistransitionstoa‘DU’chain,forexample,onDayn+1.Therefore,thesumofallthe‘DX’chainsinthatsubsampletotal100%(which,bydefinition,theymust).Itwouldbeamistaketoobtaintheteststatisticinthewrongorder.Forexample,todeterminethefrequencyof‘XD’.Inwordsthiswouldbeakintoaskingourselves,giventhefactthat‘Dayn’hasendedinthe‘DState’whatistheprobabilityofobservingthe‘XState’on‘Dayn–1’?SuchanobservationwouldnotbeinaccordancewithMarkoviancharacteristics.Forreasonsofpersonalpreference,thispaperwillusetheunconventionalDaynObservationsascolumns(ergo,theColumnswillsumto100%),andapologizesareofferedtothosereadersmoreaccustomedtothemorefrequentformwheretherowssumto100%.

MARKOVPROBABILITIESOBSERVEDINWTIPRICEMOVEMENTSSINCE1986

ThefollowingtableshowstheprobabilityofobservinganXpricemovementonDayn+1giventheoccurrenceofanXmovementontheprecedingday:

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page8

CONN VALUATION SERVICES LTD.

TABLE2:MARKOVPROBABILITIESINWTI

2 Day Chain3 Day n Observation

D S U

Day (n +1) Observations

D 46.61% 41.13% 48.44% S 1.74% 4.03% 1.65% U 51.65% 54.84% 49.90%

100.00% 100.00% 100.00%

10 Day Chain Day n Observation

D S U

Day (n +1) Observations

D 46.60% 41.13% 48.44% S 1.74% 4.03% 1.65% U 51.66% 54.84% 49.90%

100.00% 100.00% 100.00%

100 Day Chain Day n Observation

D S U

Day (n +1) Observations

D 46.48% 40.98% 48.49% S 1.74% 4.10% 1.65% U 51.78% 54.92% 49.86%

100.00% 100.00% 100.00%

1000 Day Chain Day n Observation

D S U

Day (n +1) Observations

D 47.10% 41.57% 48.56% S 1.36% 5.62% 1.41% U 51.53% 52.81% 50.03%

100.00% 100.00% 100.00%

3Somelicenceistakenwiththenamingconventionhere.Recognizethatanobservationoftwoperiods(e.g.SU)requiresthreeseparatedaysbecauseitcanonlybeknownwhatthe‘n’daymovementisattheendofthesecondday.Similarly,then+1dayobservationcanonlybecompletedatendofdaythree.Therefore,whenwespeakofaTwoDayChain,wereallymeanthreedayshaveelapsed.Further,forthe10‐DayChain,Day‘n’istheobservationtakenonDay10(the9thpricemovement)andDay(n+1)istheobservationtakenonDay11.Usingposthocdatalookingbackwards,wearealwaysinterestedintheXXmovementsattheendofthechain.ThiswillnotbethecasewhenweuseMarkovprobabilitiestopredictfuturepricemovements.

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page9

CONN VALUATION SERVICES LTD.

Similartoourobservationsregardingthesimplefrequenciestable,wenotethattheMarkovprobabilitiesalsodisplayasurprisingconsistencyregardlessofhowlongthepricemovementchainis.Itisnotasintuitivelyobvious,inthiscasewhetherthisconsistencyisagoodthingornot.However,thestatisticalinterpretationofoutcomesissimilar.Lookingatthe2DayChaindata,forexample,ofalltheoccasionswhereanoccurrenceofDXwasobserved,46.60%ofthosetimesresultedinaDDobservation,1.74%ofthetimeaDSwasobservedand51.65%ofthetimesaDUeventhadoccurred.BeforeproceedingonwithamoreindepthdescriptionofMarkovprobabilitiesandhowtheymightbetested,itwillbeusefultodigresstoacomparisonoftheDailyvs.WeeklyMarkovMatricesasthisinformationwillbecomerelevantlaterinthediscussion.ThefollowingissimplyarepeatofTable2asabove,exceptnowtheweek‐endclosingpricedatahasbeenjuxtaposed(ontheright)alongsidethedailydata:

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page10

CONN VALUATION SERVICES LTD.

TABLE3:DAILYVSWEEKLYMARKOVPROBABILITIES

Daily WTI Price Chain Data Weekly (i.e. week-ending) WTI Price Chain Data 2 Day Chain 2 Week Chain

Day n Observation Weekly n Observation

D S U D S U

Day (n +1) Observations

D 46.61% 41.13% 48.44% Weekly (n +1) Observations

D 51.66% 50.00% 42.51%

S 1.74% 4.03% 1.65% S 0.58% 0.00% 0.26%

U 51.65% 54.84% 49.90% U 47.76% 50.00% 57.23%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10 Day Chain 10 Week Chain Day n Observation Weekly n Observation

D S U D S U

Day (n +1) Observations

D 46.60% 41.13% 48.44% Weekly (n +1) Observations

D 51.17% 50.00% 42.44%

S 1.74% 4.03% 1.65% S 0.59% 0.00% 0.26%

U 51.66% 54.84% 49.90% U 48.25% 50.00% 57.31%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

100 Day Chain 100 Week Chain Day n Observation Weekly n Observation

D S U D S U

Day (n +1) Observations

D 46.48% 40.98% 48.49% Weekly (n +1) Observations

D 51.55% 50.00% 42.47%

S 1.74% 4.10% 1.65% S 0.62% 0.00% 0.27%

U 51.78% 54.92% 49.86% U 47.83% 50.00% 57.26%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

1000 Day Chain 1000 Week Chain Day n Observation Weekly n Observation

D S U D S U

Day (n +1) Observations

D 47.10% 41.57% 48.56% Weekly (n +1) Observations

D 51.14% 0.00% 41.54%

S 1.36% 5.62% 1.41% S 0.46% 0.00% 0.00%

U 51.53% 52.81% 50.03% U 48.40% 100.00% 58.46%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Salientobservationsincomparingthedailyvs.weeklyprobabilitiesare:

1. GiventhataparticularweekhasendedinaUstate,itisabout8%morelikelythatitwillbefollowedbyanotherUweek‐endthanisitthecasethataUUoccurrencewouldbeobservedinthedailydata.

2. Thecorollaryisthat,giventhataweekhasendedinaDstate,itismarginallylesslikelythatitwillbefollowedbyaU(DU’sonlyoccurapproximately48%ofthetimeintheweekly

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page11

CONN VALUATION SERVICES LTD.

data)thanwouldbethecaseinthedaily(whereDU’soccurapproximately52%ofthetime).

TheotherreadilyapparentobservationwecanmakeabouttheWeeklyData,isthatthismuchlessstabilityintheoccurrenceoftheSXchains.Thisstandstoreasonbecausethenumberofoccasionsuponwhichthefirstweekwillendatexactlythesamepriceasthestartingobservationwillbequiterare.

THEMARKOVTRANSITIONMATRIX

Ifweacceptthatonlythecurrentstateisanindicatorofwherethenextstateislikelytobe(and,therefore,allthepreviouspricemovementspriortothecurrentstatehavenobearinginthematter),thenthereisasinglematrixthatwillencapsulateallthatcanbeknownaboutprobablepricemovements.ThisiscalledtheTransitionMatrixand,inthecaseofthedailyWTIpricedataisrepresentedby:

TABLE4:MARKOVTRANSITIONMATRIX

2 Day Chain Day n Observation

D S U

Day (n +1) Observations

D 46.61% 41.13% 48.44% S 1.74% 4.03% 1.65% U 51.65% 54.84% 49.90%

100.00% 100.00% 100.00%

Thistellsusthat,giventhatwehavealreadyobservedaDmovementtoday(onDayn),thereisa46.61%probabilityofanotherDmovementhappeningtomorrow(onDay(n+1)).Butdoesitgiveusanypredictiveinsightintowhatislikelytohappenthedayaftertomorrow(onDay(n+2))?Forexample,giventhattodayaDmovementhasalreadyoccurred,whatistheprobabilitythatanotherDmovementwilloccurtomorrowfollowedbyanotherDmovementthedayafterthat?Well,todayweknowthereisa46.61%probabilitythatasubsequentDwilloccuronDay(n+1)andthentomorrow,giventhataDmovementhadalreadyhappenedonthatday,theprobabilityofanotherD(onDay(n+2))is46.61%again.So,theprobabilityofaDDDis46.61%^2=21.7249%ButwhatifwewereattemptingtopredictthemorerelevantinstancewhereweknowtodayhasendedwithaDmovement(forexample),butwewishtopredictifDay(n+2)wouldendwithaDmovement?Symbolically,thiscanberepresentedbythechainDXD.TheprobabilityofobservingaDonDay(n+2)giventhataDhasoccurredonDaynmustbethesumoftheprobabilities:DDD+DSD+DUD.ThesearetheonlythreepathsbeginningwiththecurrentstateofDthatwillallowustofinishwithaDonDay(n+2).Usingthe2DayprobabilitiesfromtheTransitionMatrix,wecancalculatethisprobabilityas:

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page12

CONN VALUATION SERVICES LTD.

DDD=(DD)x(DD) =46.61%x46.61% =21.7249% DSD= (DS)x(SD) =1.74%x41.13% =0.7157% DUD=(DU)x(UD) =51.65%x48.44% =25.0193% PROBABILITYOFDXD =47.46%4Markovchainshavethissomewhatcounter‐intuitiveandironicquality:pastmovementshavenopredictivepower–knowingthepricepathuponwhichtoday’sstatecameintobeingisofnopracticalassistanceinestimatingwhattomorrow’spricemovementwillbe–onlytoday’sstatehasanybearingupontomorrow.Andyet,whenestimatingfurtherforward,saytothedayaftertomorrow,thenthepricepathdoesbecomerelevant.Thisisbecausetomorrow’sstateisdependentuponwhatstateweareattodayandsotoowillbethestateonDay(n+2)becauseweareattemptingtopredictitpriortoknowingwithabsolutecertaintyhowtomorrowwillend.Thisisthe‘chain‐like’featureofMarkovchains.WhilewecouldcontinuetocalculateallthepossiblepathsremainingaswedidaboveforDXD,namely:DXS,DXU,SXD,SXS,SXU,UXD,UXSandUXU,itwillbeeasieratthispointjusttonotethat,becauseofthemarvelsofmatrixalgebra,alltheseoutcomeswillbeprovidedsimplybyraisingtheTransitionMatrixtothepoweroftwo:FIGURE3:TRANSITIONMATRIXRAISEDTO2NDPOWER

Matrix A Matrix A2 D S U D S U

D 46.61% 41.13% 48.44% ^2 47.46% 47.39% 47.43%S 1.74% 4.03% 1.65% = 1.73% 1.78% 1.73%U 51.65% 54.84% 49.90% 50.81% 50.82% 50.83%Therefore,if,onDaynweareinStateS,andweareattemptingtoestimatewhattheprobabilityisthatDay(n+2)willendalsoinStateS,MatrixA2tellsusthereisa1.78%chanceofthatoccurring.And,itshouldbereadilyapparentthatestimatingtheoutcomeonDay(n+3)isrepresentedinMatrixA3andthattheprobableoutcomesonDay(n+100)arecapturedinMatrixA100,etc.Therefore,ifwewishtoknowwhattheprobabilityisthatWTIwillcloseeitherinanD,SorUstate1,000dayshence,weonlyneedaninexpensivematrixcalculatortokeyinMatrixAasaboveandraisethistothepowerof1,000.Couldanyapproachbesimpler?Inthiscase,theanswerisYES,because,aswewillnextdiscuss,theprocessveryquicklyapproachesasteadystate.

STEADYSTATELIMITVALUEOFTRANSITIONMATRIX

Ignoringallthereasoningastowhythisistrue5,itturnsoutthat,iftheTransitionMatrixis‘regular’(meaningallitselementsarepositive–and,ofcourse,thecolumnsallsumto1),thenraisingthe

4ThosewithagreaterfamiliarityofMatrixAlgebrawillrecognizethisasthedotproductofthefirstcolumnandthetranspositionofthefirstrow.

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page13

CONN VALUATION SERVICES LTD.

matrixtoincreasinglylargerpowerswilleventuallybringittoa‘steadystate’whereinalltheelementsapproachalimitingvalue(referredtoasanasymptoticquality).Asithappens,theWTItransitionmatrixreachesitslimitveryquickly(inlessthan5days),ascanbeseenbelow:

5Thesteady‐statevectorcanbefoundbyfirstfindingtheeigenvectorresultingfromtheeigenvalue+1.Thiseigenvectorwillbeamultipleofthesteady‐statevectorwhichcanbefoundbyscalingitscomponentssuchthattheysumto1.

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page14

CONN VALUATION SERVICES LTD.

TABLE5:TRANISITIONMATRIXRAISEDTOINCREASINGPOWERS

Matrix A

D S U

D 46.61% 41.13% 48.44%

S 1.74% 4.03% 1.65%

U 51.65% 54.84% 49.90%

Matrix A2

D S U

D 47.46% 47.39% 47.43%

S 1.73% 1.78% 1.73%

U 50.81% 50.82% 50.83%

Matrix A3

D S U

D 47.44% 47.44% 47.45%

S 1.74% 1.74% 1.74%

U 50.82% 50.82% 50.82%

Matrix A4

D S U

D 47.44% 47.44% 47.44%

S 1.74% 1.74% 1.74%

U 50.82% 50.82% 50.82%

Matrix A10

D S U

D 47.44% 47.44% 47.44%

S 1.74% 1.74% 1.74%

U 50.82% 50.82% 50.82%

Matrix A100

D S U

D 47.44% 47.44% 47.44%

S 1.74% 1.74% 1.74%

U 50.82% 50.82% 50.82%

Matrix A1000

D S U

D 47.44% 47.44% 47.44%

S 1.74% 1.74% 1.74%

U 50.82% 50.82% 50.82%

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page15

CONN VALUATION SERVICES LTD.

ItcanbeseenintheabovethattheWTIsteadystateisachievedbyDay(n+4)–theprobabilitiesinMatrixAraisedtothe4thpowerareexactlythesamewhenraisedtothe10th,100thor1,000thpower.Noteaswellthattheprobabilitiesineachofthecolumnsduplicateeachother–thismeansthat,bythefourthday,itdoesnotmatterwhattheinitialstatewas–theoutcomeprobabilitiesarethesameregardlessofwhereonestarted.Therefore,forlong‐termestimation,oneneednottakeintoaccountthestartingstate,theprobabilityofexperiencingaD,SorUonanygivendayinthefutureremainsstatic,namely;D=47.44%,S=1.74%,andU=50.82%6Similarly,fortheWeeklyData,theTransitionMatrixcanbeseeninTable3above(theTwo‐Weekmatrix)andthismatrixisalsoquicklyasymptotic,reachingasteady‐stateafterbeingraisedtothepowerofseven.TABLE6:WEEKLYSTEADYSTATEPROBABILITIES

Weekly Data - Steady State

D S U

D 46.827% 46.827% 46.827%

S 0.406% 0.406% 0.406%

U 52.767% 52.767% 52.767%

100.00% 100.00% 100.00%

CHI‐SQUARETESTS

Atlastwehavesufficientbackgroundtoattendtotheinitialquestion:“DoWTIoilpricemovementsfollowaMarkovChain?”TheChi‐Squarestatisticisagoodness‐of‐fittestthatwecanusetoaskthequestion;‘Howlikelyisit,baseduponrandomvariationalone,thattheobservedWTIoutcomeswoulddifferasmuchastheydofromtheexpectedoutcomes–assumingthatWTIpricedoesmoveinaMarkovchain?’TheChi‐squarestatisticis:

² ∑

However,onecannotuse‘scaled’orproportionateinputsforthechi‐squarecalculation–thepercentagedatathathasbeensoconvenienttouseinmatrixformuptothispointwillgive

6Somemaypointoutthatthesesteady‐stateprobabilitiesderivedfromtheTransitionMatrixaresimplythesumoftherowsintheveryfirst2‐dayfrequencystatisticsfromTable1.D=47.45%=(22.11%+0.71%+24.63%);S=1.74%=(0.83%+0.07%+0.84%);U=50.82%=(24.50%+0.95%+25.37%).Thisisoftenthecasewithmoresophisticatedmeasurementfunctions–theyonlyservetoconfirmwhatweintuitivelywouldhavesuspectedtobethetruthbutwithoutstatisticalproof.Withonlytherelativefrequencies,forexample,wedidnotknowthattheMarkovprobabilitieswouldconvergetoasteady‐statelimitorhowquicklythismayhappen.

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page16

CONN VALUATION SERVICES LTD.

erroneouschi‐squarestatistics.7Wemustactuallyusethecountdata,which,forexample,forthetenday‐chain,was:TABLE7

10 Day-Chain Observations

D S U

D 1,577 51 1,757

S 59 5 60

U 1,748 68 1,810

3,384 124 3,627

Theten‐dayexpectedmatrixdataisafunctionoftheA10matrixinTable5–thatis,iftheWTIpricesdofollowaMarkovchain,wewouldexpectthepossibilityofaDstateonday10tobe47.44%(regardlessofthestartingstate),anSoutcomewouldoccur1.74%ofthetimeand,finallyanUoutcomehastheprobabilityof50.82%.Thisinformation,combinedwiththefactthatweknowtherewere7,13510‐daychainsinthehistoricdata(simplythesumofthecolumntotalsfromTable6)leadsustotheconclusionthatthe10‐DayExpectedMatrixwouldbe:TABLE8

10-Day Expected Outcome

D S U

D 1,606 59 1,721

S 59 2 63

U 1,720 63 1,843

3,385 124 3,627

Theresultingchi‐squarestatisticfromthecomparisonofthesetwomatricesis8.44.Applicable‘DegreesofFreedom‘forthistestis8.8Wewillassumea.05or5%alphasignificance.OurnullhypothesisisthattheWTIpricesdofollowaMarkovchainandthereforeanyvariancewefindbetweentheactualobservedcountsandthehypotheticallyexpectedarejusttheresultofrandomvariation(i.e.chance).Thechi‐squarestatisticcalculateshowprobableitwouldbetoencounterthecalculatedvariancejustbaseduponrandomchancealone.Ifwefindthatthereislessthana5%chancethatsuchachi‐squareoutcomecouldbeobservedasaresultofrandomchance,thenwemustrejectthenullhypothesisandconcludethatWTIpricesdonotfollowaMarkovchain.ConsultingaChi‐squaretablequicklyshowsthat,at8dfandχ2=8.44thestatisticiswellabovethe25%probabilitymark(anyreliablestatisticssoftwarepackagewillreportthattheactualprobabilityis39.1%).Therefore,baseduponthe10‐daychainalone,wewouldnotrejecttheconclusionthatWTIpricesfollowaMarkovchain.

7Specifically,alltheexpectedcountsmustbe>thanone–andbydefinitionaprobability%willnotqualify.8ThereisoftenconsiderableconfusionaboutDegreesofFreedom(df)forthechi‐squaretests.Theissuedependsuponwhetherasingle‐sampletestofindependenceisbeingperformed(inwhichcase,therelevantdfwouldbe(rows–1)(columns–1)andwouldamountto4fortheabove.However,agoodness‐of‐fittestisacomparisonbetweentwosamples:theactualobservedandthehypotheticallyexpected,thereforethedfis(k–1)wherekisthenumberofcellsinthetwo‐waytable.

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page17

CONN VALUATION SERVICES LTD.

Similarly,theχ2wascalculatedforallthe10‐Day,100‐Dayand1,000‐Dayand10‐Week,100‐Weekand1,000‐Weekchains.Innocasewastherereasontorejectthenullhypothesis.WhilewecanreasonablyconcludethatWTIpricesdofollowaMarkovchain9,wearemoreinterestedintheresultsofthelonger1,000‐periodchainsasweareattemptingtomodellong‐term,ratherthanshorttermWTIprices.

9Tobeprecise,wehavenoevidencetorejecttheassumptionthatWTIfollowsaMarkovchain.ThisisdecidedlydifferentthanhavingproofpositivethatWTIdoesfollowaMarkovchain.

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page18

CONN VALUATION SERVICES LTD.

TABLE9:CHI‐SQUARESTATISTICS

Chi-square results (8 df) CHAIN LENGTH χ2 α Prob. Reject Ho?

10-Day Chains 8.45 39.1% No

100-Day Chains 8.89 35.2% No

1000-Day Chains 11.00 20.2% No

10-Week Chains 12.68 12.3% No

100-Week Chains 12.90 11.5% No

1000-Week Chains 6.78 56.1% No

TIMEHOMOGENEITY

OneoftherequirementsofMarkovprobabilitiesistheassumptionoftimehomogeneity.Thatis,theprobabilityofmovingfromagivenstatetothenextstateisassumedtoremainconstantovertime.InthecaseofWTIpricemovements,wecanspeculatethatthisisarequirementthatisnotstrictlyadheredto.Weknowforcertain,forexample,thatWTIpricesexhibitsperiodsofgreaterandlesservolatility(seeFigure4).TheseperiodsmayalsobeassociatedwithvaryingprobabilitiesbetweenD,S,andUstates.Wemightalsospeculatethat,duringtimesofeconomicboon,thefrequencyofUmovementsincreasesand,correspondingly,theDfrequencymayincreaseduringperiodsofeconomicrecession.Thepertinentquestionbecomes:‘HowmightthisinfractionofthetimehomogeneityrequirementimpairourabilitytouseaMarkovprobabilitymodeltopredictfuturepricesteps?

Theanswertothisquestionisbeyondthescopeofthispaperandiscertainlydeservingofapaperallonitsown.Sufficeittosaythat,onayear‐over‐yearbasis,thereisconsiderablevariationamongstthestatespaceprobabilities.Completedetailsofall28individualyearsareprovidedinAppendix2.Tohighlightthedailyextremes,however,insomeyearstheDDchainrepresentedasmuchas54.5%ofallDXmovementswhereasinothersitdroppedtoonly36.8%.InpeakyearstheUUchainoccurred61.7%ofallUXmovementsandthisdroppedtoaslowas38.8%inotheryears.

Inspiteofdemonstratingloweroverallpricevolatility,theweeklychaindatademonstratedanevengreatervariance.InsomeyearstheDDchainrepresented71%ofallpossibleDXoutcomeswhereasinothersitdroppedto23.5%.Attheotherextreme,UUchainsrangedbetweenahighof71%ofallUXoutcomestoalowof36.8%.

Iftherelevantperioduponwhichtomeasuretimehomogeneityisone‐yearinlength,thenwecandefinitelyconcludethattheWTIpricemovementsarecompromisedinthischaracteristic.WTIpricemovementsdonotadheretoahomogenousprobabilitymatrixthroughtime.

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page19

CONN VALUATION SERVICES LTD.

FIGURE410

CONCLUSIONS

ThispaperhasdiscussedtheprimarycharacteristicsofMarkovchainsandhowtheymayapplytothemovementofWTIpricesbetweenprice“states”(Down,SameandUp).ThemostimportantMarkovpropertyisthatonlythecurrentstatehasanypredictivebearinguponthenextstate–allpreviouspricemovementsbeforethecurrentstateareirrelevantinthepredictionofwhereWTIpricemaygonext.WetestedfortheexistenceofaMarkovchainusingsimplestatisticsaswellasviaaformalChi‐squareapproachandfound,inallcases,thattheWTIpricemovementsdostronglyexhibitthisqualityofaMarkovchain.Further,weidentifiedthetransitionmatrixforboththedailyandweeklyMarkovprobabilitiesandfoundthat,inbothcases,theasymptoticlimitsarequicklyachievedandasteadystateisrealizedonlyafterafewfutureperiods.Aconfoundingcomplexity,however,isthattheposthocWTIhistoricaldatadoesnotdemonstratetimehomogeneity.Infact,thereisconsiderablevariationinthesingleyearMarkovprobabilitiesovertimeanditremainstobeseenjusthowsuchadefectwillimpairourabilitytoreasonablypredictfutureWTIstates.

10Theweeklyvolatilityparallelstheebbsandflowsofdailydata,butisexpectedlylessineachyear.Thisisbecausethedailyfluctuationsadds‘noise’tothevolatilitycalculation.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

Annual WTI Price Volatility: Daily vs. Weekly Data

Daily Data: Annualized Single‐Year WTI Volatility

Weekly Data: Annualized Single‐Year WTI Volatility

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page20

CONN VALUATION SERVICES LTD.

Wehavenotyetbeguntoconsiderhowlargethesizeofeachstepbetweenthevariousstatesshouldbe(i.e.thedollaramountofaUorDmove).Thistopicislefttobeinvestigatedinthefollowingpaper.

WehavediscussedtheconceptualissuessurroundingMarkovprobabilitiesandmatrixalgebrasufficientlythatweshouldnowbeabletoapplythesteady‐stateprobabilitiesinanactualMonteCarlomodeldesignedtopredictfuturestatesoftheWTIpricemovements.Thiswillbethesubjectofthenextandconcludingpaperinthisseries.

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page21

CONN VALUATION SERVICES LTD.

APPENDIX1

WEEKLY DATA: Frequency of 'XX' Ending Chains in EIA Data

Two-Week Chains Week n Observation

D S U

Week (n + 1) Observation

D 24.15% 0.20% 22.46%S 0.27% 0.00% 0.14%U 22.33% 0.20% 30.24%

100% *

Ten-Week Chains Week n Observation

D S U

Week (n + 1) Observation

D 23.81% 0.20% 22.52%S 0.27% 0.00% 0.14%U 22.45% 0.20% 30.41%

100% *

Ten-Week Chains Week n Observation

D S U

Week (n + 1) Observation

D 24.06% 0.22% 22.46%S 0.29% 0.00% 0.14%U 22.32% 0.22% 30.29%

100% *

Ten-Week Chains Week n Observation

D S U

Week (n + 1) Observation

D 23.33% 0.00% 22.50%S 0.21% 0.00% 0.00%U 22.08% 0.21% 31.67%

100% * * The sum of all 9 observations total 100% as expected

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page22

CONN VALUATION SERVICES LTD.

APPENDIX2

APPENDIX 2: ANNUAL MARKOV PROBABILITIES 1986 THROUGH 2013 DAILY DATA WEEKLY DATA

YEAR YEAR

1986 D S U 1986 D S U

D 49.57% 33.33% 45.16% D 56.00% 0.00% 42.31%

S 3.42% 0.00% 4.03% S 0.00% 0.00% 0.00%

U 47.01% 66.67% 50.81% U 44.00% 0.00% 57.69%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

1987 D S U 1987 D S U

D 50.00% 50.00% 44.26% D 53.85% 0.00% 46.15%

S 5.00% 0.00% 4.92% S 0.00% 0.00% 0.00%

U 45.00% 50.00% 50.82% U 46.15% 0.00% 53.85%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

1988 D S U 1988 D S U

D 36.84% 50.00% 50.37% D 45.83% 0.00% 44.83%

S 4.39% 0.00% 0.73% S 0.00% 0.00% 0.00%

U 58.77% 50.00% 48.91% U 54.17% 0.00% 55.17%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

1989 D S U 1989 D S U

D 38.26% 25.00% 51.49% D 42.86% 0.00% 38.71%

S 3.48% 0.00% 2.99% S 0.00% 0.00% 0.00%

U 58.26% 75.00% 45.52% U 57.14% 0.00% 61.29%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

1990 D S U 1990 D S U

D 50.39% 40.00% 51.22% D 46.15% 0.00% 57.69%

S 2.33% 0.00% 1.63% S 0.00% 0.00% 0.00%

U 47.29% 60.00% 47.15% U 53.85% 0.00% 42.31%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

1991 D S U 1991 D S U

D 43.44% 50.00% 50.78% D 53.85% 0.00% 42.31%

S 3.28% 0.00% 1.56% S 0.00% 0.00% 0.00%

U 53.28% 50.00% 47.66% U 46.15% 0.00% 57.69%

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page23

CONN VALUATION SERVICES LTD.

APPENDIX 2: ANNUAL MARKOV PROBABILITIES 1986 THROUGH 2013 DAILY DATA WEEKLY DATA

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

1992 D S U 1992 D S U

D 45.24% 54.55% 53.33% D 52.17% 50.00% 40.74%

S 2.38% 0.00% 6.67% S 4.35% 0.00% 3.70%

U 52.38% 45.46% 40.00% U 43.48% 50.00% 55.56%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

1993 D S U 1993 D S U

D 50.00% 14.29% 61.68% D 61.77% 0.00% 63.16%

S 2.94% 14.29% 1.87% S 0.00% 0.00% 0.00%

U 47.06% 71.43% 36.45% U 38.24% 0.00% 36.84%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

1994 D S U 1994 D S U

D 51.24% 0.00% 46.51% D 31.58% 0.00% 42.42%

S 0.83% 0.00% 0.78% S 0.00% 0.00% 0.00%

U 47.93% 100.00% 52.71% U 68.42% 0.00% 57.58%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

1995 D S U 1995 D S U

D 44.14% 33.33% 44.03% D 45.83% 0.00% 42.86%

S 1.80% 0.00% 2.99% S 0.00% 0.00% 0.00%

U 54.05% 66.67% 52.99% U 54.17% 0.00% 57.14%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

1996 D S U 1996 D S U

D 42.59% 33.33% 43.57% D 42.86% 0.00% 38.71%

S 1.85% 16.67% 2.14% S 0.00% 0.00% 0.00%

U 55.56% 50.00% 54.29% U 57.14% 0.00% 61.29%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

1997 D S U 1997 D S U

D 51.88% 46.15% 54.72% D 70.97% 50.00% 47.37%

S 3.76% 15.39% 5.66% S 6.45% 0.00% 0.00%

U 44.36% 38.46% 39.62% U 22.58% 50.00% 52.63%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page24

CONN VALUATION SERVICES LTD.

APPENDIX 2: ANNUAL MARKOV PROBABILITIES 1986 THROUGH 2013 DAILY DATA WEEKLY DATA

1998 D S U 1998 D S U

D 54.48% 66.67% 50.88% D 67.65% 0.00% 55.56%

S 1.49% 0.00% 0.88% S 0.00% 0.00% 0.00%

U 44.03% 33.33% 48.25% U 32.35% 0.00% 44.44%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

1999 D S U 1999 D S U

D 47.66% 60.00% 38.85% D 36.84% 0.00% 38.24%

S 0.94% 0.00% 2.88% S 0.00% 0.00% 0.00%

U 51.40% 40.00% 58.27% U 63.16% 0.00% 61.77%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

2000 D S U 2000 D S U

D 44.14% 50.00% 43.80% D 45.46% 0.00% 36.67%

S 0.00% 0.00% 1.46% S 0.00% 0.00% 0.00%

U 55.86% 50.00% 54.75% U 54.55% 0.00% 63.33%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

2001 D S U 2001 D S U

D 53.49% 0.00% 50.85% D 53.57% 0.00% 58.33%

S 1.55% 0.00% 0.85% S 0.00% 0.00% 0.00%

U 44.96% 100.00% 48.31% U 46.43% 0.00% 41.67%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

2002 D S U 2002 D S U

D 44.44% 14.29% 43.70% D 45.46% 0.00% 40.00%

S 2.78% 14.29% 2.22% S 0.00% 0.00% 0.00%

U 52.78% 71.43% 54.07% U 54.55% 0.00% 60.00%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

2003 D S U 2003 D S U

D 41.38% 50.00% 50.76% D 47.83% 100.00% 35.71%

S 1.72% 0.00% 0.00% S 0.00% 0.00% 3.57%

U 56.90% 50.00% 49.24% U 52.17% 0.00% 60.71%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

2004 D S U 2004 D S U

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page25

CONN VALUATION SERVICES LTD.

APPENDIX 2: ANNUAL MARKOV PROBABILITIES 1986 THROUGH 2013 DAILY DATA WEEKLY DATA

D 41.18% 0.00% 55.04% D 59.09% 0.00% 29.03%

S 0.00% 0.00% 0.78% S 0.00% 0.00% 0.00%

U 58.82% 100.00% 44.19% U 40.91% 0.00% 70.97%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

2005 D S U 2005 D S U

D 40.74% 75.00% 43.17% D 54.17% 0.00% 39.29%

S 2.78% 0.00% 0.72% S 0.00% 0.00% 0.00%

U 56.48% 25.00% 56.12% U 45.83% 0.00% 60.71%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

2006 D S U 2006 D S U

D 46.28% 0.00% 51.56% D 45.83% 0.00% 50.00%

S 0.00% 0.00% 0.00% S 0.00% 0.00% 0.00%

U 53.72% 0.00% 48.44% U 54.17% 0.00% 50.00%

100.00% 0.00% 100.00% 100.00% 0.00% 100.00%

2007 D S U 2007 D S U

D 43.70% 66.67% 49.23% D 33.33% 0.00% 32.35%

S 1.68% 0.00% 0.77% S 0.00% 0.00% 0.00%

U 54.62% 33.33% 50.00% U 66.67% 0.00% 67.65%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

2008 D S U 2008 D S U

D 53.49% 0.00% 48.78% D 68.75% 0.00% 50.00%

S 0.00% 0.00% 0.81% S 0.00% 0.00% 0.00%

U 46.51% 100.00% 50.41% U 31.25% 0.00% 50.00%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

2009 D S U 2009 D S U

D 50.41% 0.00% 45.80% D 23.53% 0.00% 37.14%

S 0.00% 0.00% 0.00% S 0.00% 0.00% 0.00%

U 49.59% 0.00% 54.20% U 76.47% 0.00% 62.86%

100.00% 0.00% 100.00% 100.00% 0.00% 100.00%

2010 D S U 2010 D S U

D 52.42% 100.00% 45.67% D 47.62% 0.00% 37.50%

S 0.00% 0.00% 0.79% S 0.00% 0.00% 0.00%

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page26

CONN VALUATION SERVICES LTD.

APPENDIX 2: ANNUAL MARKOV PROBABILITIES 1986 THROUGH 2013 DAILY DATA WEEKLY DATA

U 47.58% 0.00% 53.54% U 52.38% 0.00% 62.50%

100.00% 100.00% 100.00% 100.00% 0.00% 100.00%

2011 D S U 2011 D S U

D 42.02% 0.00% 51.88% D 41.67% 0.00% 46.43%

S 0.00% 0.00% 0.00% S 0.00% 0.00% 0.00%

U 57.98% 0.00% 48.12% U 58.33% 0.00% 53.57%

100.00% 0.00% 100.00% 100.00% 0.00% 100.00%

2012 D S U 2012 D S U

D 47.86% 100.00% 44.78% D 65.52% 0.00% 45.46%

S 0.86% 0.00% 0.00% S 3.45% 0.00% 0.00%

U 51.28% 0.00% 55.22% U 31.03% 100.00% 54.55%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

2013 D S U 2013 D S U

D 45.38% 0.00% 49.62% D 60.00% 0.00% 40.74%

S 0.00% 0.00% 0.00% S 0.00% 0.00% 0.00%

U 54.62% 0.00% 50.38% U 40.00% 0.00% 59.26%

100.00% 0.00% 100.00% 100.00% 0.00% 100.00%

Copyright2014ConnValuationServicesLtd.Allrightsreserved,nopartofthisworkmaybereproducedwithouttheowner’sexpresswrittenpermission. Page27

CONN VALUATION SERVICES LTD.

REFERENCES

Xu,H.,Zhang,Z.X.,ATrendDeductionModelofFluctuationOilPrices,(revised2011),InstituteofInternationalStudies,FudanUniversity,Shanghai

Mostafaei,H.etal.,ModellingthefluctuationsofBrentoilpricesbyaprobabilisticMarkovchain,(2011),JournalofComputations&Modelling,vol.1,no.2,17–26

Abazi,A.,StochasticVolatilityintheCrudeOilPrices:AMarkovChainMonteCarloApproach,(2003),unpublishedthesis

Sirdari,M.Z.etal.,AsationaritytestonMarkovchainmodelsbasedonmarginaldistribution,SchoolofMathematicalSciences,UniversitiSainsMalaysia