Derivatives - Option Valuation

Preview:

Citation preview

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 1/731

Option Valuation

Copyright © 2000 – 2006Investment Analytics

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 2/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 2

 Agenda

Lattice methods of valuation

Binomial model

Black Scholes Model

Extensions to Black Scholes

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 3/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 3

Why Valuation Models?

Pricing / Trading Only know terminal payoff value

Need to know interim value

Risk Management

 A model will tell us how sensitive a

derivative is to changes in market factors

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 4/73Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 4

Option Pricing

Option payoff depends on stock price Need to model stock prices

Binomial models

Continuous time models

Option values depend on stock volatility

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 5/73Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 5

Binomial Model

Looks at stock price movement oversmall periods of time ∆t

Start with one period, ∆t = 1 It turns out quite easy to determine option

price in this case

Then many periods Ultimately we can model infinite number of 

up/down movements

This is continuous time

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 6/73Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 6

Binomial Price Tree

Usual to assume u > 1 > d

S

Su

Sd

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 7/73Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 7

One-Period Model Example

S = 100, u = 2, d = 0.5 Su = 200

Sd = 50

Interest rate: 10% Bond price 100 today, 110 in one period

Suppose call strike price is 100 What is price of call option?

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 8/73Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 8

One-Period Model

 At Su Stock worth 200

Option pays 100

Bond worth 110

 At Sd

Stock worth 50 Option worth 0

Bond worth 110

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 9/73Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 9

One-Period Model

Up Down

Stock 200 50

Bond 110 110Call 100 0

But look at a portfolio of 0.6667 stocks and -0.30303bonds: produces the same payoff as the call!

UP: (0.6667*200) - (0.30303*110) = 100

Down:(0.6667*50) - (0.30303*110) = 0

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 10/73Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 10

Replication The payoff of the call can be replicated 

Using the stock and the bond, combined in a portfolio

The call and the portfolio must be worth the same Because they have the same payoff 

So we know the value of the call! Because we know the value of the replicating portfolio

In this case: C = (100*0.6667) - (0.30303*100) = $36.37

This tells us 2 things: How to price the call

How to “create” the call if it didn’t exist

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 11/73Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 11

Replication - General Formula

In general, need to solve: Cu = max{Su-X, 0} = nSu + m B(1 + rf )

Cd =max{Sd-X,0} = nSd + m B(1 + rf ) B(1 + rf ) = value of bond at end of period

n = # stocks, m = #bonds

Solution: n = (Cu-Cd)/(Su-Sd) is also called the delta of the option, will see it again

m = [SuCd

- SdCu]

 /[B(1 + rf 

) (Su-Sd)]

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 12/73Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 12

Risk Neutral Valuation

Define π = (1 + rf ) - du - d

ThenS = πSu + (1- π)Sd

(1 + rf )

C = πCu + (1- π)Cd

(1 + rf )

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 13/73Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 13

Risk Neutral Probability

Interpretation: π is the risk-neutral probability 

S is the NPV of ‘expected’ future stock cash flows

C is the NPV of ‘expected’ future option cash flows

Risk-Neutral:

Expected future cash flows are discounted usingthe risk-free rate: DF = 1 / (1 + rf )

This is true in a risk-neutral world, where there is nopremium for risk 

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 14/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 14

Two Period Model

S

Suu

Sdd

Su

Sd

Sud

Extension of replication idea:

Must replicatedynamically

Work backwards

Solve asequence of 1-period problems

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 15/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 15

Delta Hedging

We know how to value options Next: how to manage risk 

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 16/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 16

Option Value & Stock Prices

Option value changes as stock moves: Up move: call value increases, put value falls

Down move: put value increases, call value falls

Delta measures sensitivity of option price tostock movements:

Delta = (Change in option price)(Change in stock price)

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 17/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 17

Rebalancing

Option deltas change as stock price moves So, position deltas change too

Need to rebalance portfolio periodically to

keep it delta neutral Example: Long 10 calls, delta = 5

Hedge this position by selling 5 stocks

Now stock move up, and call delta increases to 0.6

Position delta is (10x0.6) - 5 = 1

Need to sell another stock to rebalance to deltaneutral

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 18/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 18

Delta Hedging: General Case

Idea: Replicate an option positionusing stock and bonds

Suppose we have 1 call and sell δ stock 

Need to solve:

- Su + Cu = Br

- Sd + Cd = Br

Then δ = (Cu - Cd) / (Su - Sd)

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 19/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 19

The Black-Scholes Model

Can be viewed as limit of the binomial model What happens as the time interval between

up/down movements goes to zero.

Take a time period t, divide it into n intervals

Let σ = volatility of the stock 

u = exp{σ√t/n}, d = 1/u

This value ensures process has correct volatility σ

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 20/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 20

Black-Scholes Model In limit, stock price process has the following

properties:

a) returns are normally distributed

b) returns over different periods are independent c) stock prices over any interval are log-normally

distributed

Formally, can be represented by a continuoustime stochastic process

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 21/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 21

Continuous Time

Random Walk Model

Stochastic Differential Equation

S is stock price

µ is drift factor

σ is stock volatility

X is Weiner Process  X = ε(δt)1/2

ε is standardized Normal random variate

dX dt S

dSσ µ  +=

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 22/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 22

Black-Scholes Equation

Consider delta-hedged option portfolio Must grow at risk free rate, else arbitrage

Leads to following relationship:

rV S

V rS

S

V S

V =

∂+

∂+

∂2

222

2

1σ 

DeltaGamma

Theta

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 23/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 23

Black-Scholes Option Pricing

Solution of Black-Scholes equation:

t d d 

t r  X S

d SN d  N  XeP

d  N  Xed SN C 

rt 

rt 

√−=

++

=

−−−=

−=−

σ 

σ 

σ 

12

2

1

12

21

)2 / () / ln(

)()(

)()(

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 24/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 24

Properties of the Model

Call prices increase with S, r Put prices decrease S, r

Both prices increase with volatility Value depends on time to maturity

Called time decay

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 25/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 25

 Application

IBM Options S = 107 1/2, strike = 105, Call option

Expiration:

Sat after third Fri = July 20

0.137 years

Int rate: use 6.15% Volatility 30%

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 26/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 26

Option Calculator – Pricing

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 27/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 27

Implied Volatility

Use quoted option price to back out volatility Using Newton-Raphson or other iterative method

 Volatility estimate implicit in option price

 Assuming Black-Scholes model used

Market’s estimate of future volatility Over the life of the option

May be higher or lower than historical volatility

Option “prices” often quoted in terms of implied

volatility

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 28/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 28

 Application: Implied Volatility

Sun Microsystems Options S = 104, strike = 95

Option price $11.5

Expiration (Aug options): 0.08 years

Int rate: 6.15%

Implied Volatility: 53.29%

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 29/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 29

Option Calculator - Implied Vol

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 30/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 30

Black-Scholes Assumptions

Returns are normally distributed

In reality return distributions are non-Normal

Can modify model to accommodate other forms of 

distribution (Student T, Pareto-Levy) Zero transaction costs

Bid-Offer spreads and other costs can be factored in

 Volatility is static In fact volatility is stochastic

Use GARCH & other stochastic volatility models

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 31/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 31

Limitations of Black Scholes

Stocks Cannot handle dividends

 American options

Options on Futures  Assumes underlying is deliverable today

Foreign exchange

Two assets both paying “dividend”  Domestic and foreign risk free rate

Bonds Bonds prices are constrained, unlike stocks

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 32/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 32

 Validity of Black-Scholes Model

Can be extended quite easily  Asset classes

Dividends

Foreign Exchange

Futures

More realistic assumptions E.g. stochastic volatility

 Vanilla model is a benchmark  May not use it to value options, but use for

reference quotes

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 33/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 33

Extensions of Black Scholes

Index Options Options on e.g. the S&P500

European options, but with dividends

Merton’s model

Extension of Black Scholes

Underlying asset pays continuous dividends

Good approximation for S&P500

not as good for smaller indices

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 34/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 34

Merton’s Model

q: dividend yield

Futures: q = r

Currencies q = foreign interest rate

t d d 

t t qr  X Sd 

d  N Sed  N  XeP

d  N  Xed  N SeC 

rt rt 

rt qt 

σ 

σ σ 

−=

+−+=

−−−=

−=

−−

−−

12

2

1

12

21

)2() / ln(

)()(

)()(

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 35/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 35

 Application to Index Options

S&P500 Index 1368.36 Yield: 2%

June options (mature June 22) t = 0.06

Risk free rate: 6.15%

1375 call priced at 45.25

Option trading at implied vol. of 34.46%

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 36/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 36

Option Calculator:S&P500 Index Options

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 37/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 37

Foreign Exchange Options

Garman-Kohlhagen model Identical to Merton’s model

q is foreign risk free rate

Holding cost

h = r - q

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 38/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 38

Black’s Model Simple extension of Black-Scholes

Originally developed for commodity futures Used to value caps and floors

Let F = forward price, X = strike price Value of call option:

t d d 

t  X F d 

d  XN d FN eC rt 

√−=

√+=

−= −

σ 

σ 

σ 

12

2

1

21

)2 / () / ln(

)]()([

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 39/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 39

 Application to Caps

Example: 1-year cap NP = notional principal

R  j = reference rate at reset period j

R x = strike rate Then, get NP x Max{R  j - R x,0} in arrears

But this is an option on R  j, not F j Use F j as an estimator of R  j and apply Black’s

model to F j Previously was a forward price, now a forward rate

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 40/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 40

Black’s Model for Caps Payments: NP x Max{R 

 j

- R x

,0} in arrears

These are a series of options:

One for each R  j , the future spot interest rate

Called caplets  Let F j = forward rate from j to j+1

 Value of caplet j:

Discount by (1+ F j) as paid in arrears

C = NP x e-rt[F jN(d1) - R xN(d2)] / (1 + F j)

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 41/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 41

Black’s Model - Example

8% cap on 3-m LIBOR (R x = Strike = 8%) Capped for period of 3m, in 1-year’s time

f = 1-year forward rate for 3m LIBOR is 7%

R f = 1-year spot rate is 6.5%

 Yield volatility is 20% pa

See Excel workbook  Black’s Model - Example Spreadsheet

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 42/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 42

Black’s Model - Example

C = BSOpt (8%, 1, 0, 7%, 20%, 6.5%, 0, 0, 0)

Holding Cost

Hcost = (R f -d) for stocks, 0 for Futures

Cap Premium = 0.00211

Convert to %: C% = C x t / (1 + F * t)

0.00211 x 0.25 x 1 / (1 + 7% x 0.25)

Cap Premium % = 0.0518% (5.18bp)

So cost of capping $1000,000 loan would be $518

Strike Term Fwd

Rate

VolHCostC/PRf 

E/A

Bl k’ M d l E i l t

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 43/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 43

Black’s Model - Equivalent

Formulation in Terms of Price

Cap = Put option on price  Equivalent of call option on rate 

Useful if know price volatility rather than yield vol.

F = 1 / (1 + f x t) is forward price  F = 1 / (1 + 7% x 0.25) = 0.982801

X = 1/(1 + R x x t) is strike price  X = 1 / (1 + 8% x 0.25) = 0.980392

Require price volatility  Other parameters as before

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 44/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 44

Black’s Model - Price Example

C = BSOpt (.980392, 1, 0, 0.982801, 0.3702%, 6.5%, 1, 0, 0)

Cap Premium % = 0.0518% (5.18bp) So cost of capping $1000,000 loan would be $518

NOTE:

Premium already expressed as % of FV This time we are price a put option

Strike TermFwd

Price

Vol

HCost

C/PRf  E/A

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 45/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 45

Limitations of Black’s Model

Problems: Unbiasedness: empirically false

Option on R  j not same as option on F j Discount rate: fixed - but F j variable

Rates both stochastic and fixed!

If applied to prices the additional problem Assumes prices can be any positive number

But can’t exceed value of future cash flows

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 46/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 46

Time Dependent Volatility

Black-Scholes still valid if σ is functionof time

Instead of σ, use: σ(t) =

Fit σ(t) to implied volatilities of options

of varying maturities

d t  0

2)(1

τ τ σ 

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 47/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 47

Stochastic Volatility dσ = p(S, σ, t)dt + q(S, σ, t)dX

X is a Weiner process

Example: GARCH(1,1) model

{et}is a white noise process

Black-Scholes differential equation includesextra terms:

λ(S, s, t) is market price of volatility risk 

222

1 t t t  αε  βσ ω σ  ++=+

σ λ 

∂∂− V 

q p )(

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 48/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 48

 Volatility Smiles & Surfaces Implied volatilities of options with

different strikes varies Inconsistent with Black-Scholes

Implies volatilities of OTM options typicallygreater than ATM options

Smile: Plot IV vs. Strike Shows “smile” effect

Surface: Plot IV vs. Strike & Maturity

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 49/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 49

 Volatility Smile – Example

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 50/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 50

 Volatility Surface – Example

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 51/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 51

Lab: YAHOO Construct implied volatility smile & 

surface

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 52/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 52

Solution: YAHOO

95

10 0

10 5

11 0

11 5 0.07

0.15

0.32

0.57

70 %

71 %

71 %

72 %

72 %

73 %

73 %

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 53/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 53

Solution: YAHOO

95

10 0

10 5

11 0

11 5

0.07

0.15

0.32

0.57

70 %

71 %

71 %

72 %

72 %

73 %

73 %

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 54/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 54

Non-Normal Models Significant skewness and excess

kurtosis in returns

Increases with sampling frequency

Skewness 0 for Normal distribution

Kurtosis

3 for Normal distribution

33  / ])[( σ µ τ  −= X  E 

44  / ])[( σ µ κ  −= X  E 

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 55/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 55

MOT 5-Minute ReturnsMOT 5-Minute Returns

0

20

40

60

80

100

120

140

-2 . 0  0  %

-1 . 0  0  %

 0 . 0  0  %

1 . 0  0  %

2 . 0  0  %

Kurtosis= 27.5

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 56/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 56

Impact on Options

Option Valuation

 ATM / OTM options undervalued

 Volatility Curve

 Volatility curve smiles & skews

Risk Measurment

 VaR 

Option Greeks

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 57/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 57

Modeling Non-Normality

Extreme value distributions

Models maximum values

Normal mixture models

Simulate market jumps

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 58/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 58

Extreme Value Distributions Extreme value M

n Mn = Max(X1, . . . , Xn)

Standardized: Y n = (Mn – µn) / σn

Generalized Extreme Value Distn

{ }{ }⎩⎨⎧ >+≠+− =−= −

0)1(,0)1(exp0exp)(

 / 1 yif  y

if e yF 

 y

ξ ξ ξ ξ 

ξ 

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 59/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 59

Extreme Value Distributions Gumbel: tail index ξ = 0

Positive skew

Exponential tails

Normal or Lognormal returns Weibull: tail index ξ = <0

Uniform density in returns

Frechet: tail index ξ = >0 Returns generated by GARCH, Student-t or stable

Pareto

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 60/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 60

Gumbel DensityGumbel

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

    -        1  .

        0

    -        0  .

        6

    -        0  .

        2

        0  .

        2

        0  .

        6

        1  .

        0

        1  .

        4

        1  .

        8

        2  .

        2

        2  .

        6

        3  .

        0

        3  .

        4

        3  .

        8

        4  .

        2

        4  .

        6

        5  .

        0

        5  .

        4

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 61/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 61

Normal Mixtures Weighted sum of two Normal processes

Low volatility

High volatility (“jumps”)

)()1()()( 21 y y yg φ  ρ  ρφ  −+=

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 62/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 62

Moments of Normal Mixture Mean

Weighted sum of means (zero)

 Variance - weighted sum of variances

Skewness – zero

Kurtosis { }224 / 3 ∑∑ iiii σ  ρ σ  ρ 

∑= 2ii M  σ  ρ σ 

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 63/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 63

Selecting Appropriate Mixtures Three parameters

ρ, σ1 and σ2

Need three equations to solve

Match variance, kurtosis and sixth momentof empirical distribution

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 64/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 64

 Applications Option Pricing

Using MCS

 Value at Risk 

Improves measure of tail risk 

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 65/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 65

Option Pricing with Kurtosis Kurtosis will affect option value if present

over life of option Hence typically more relevant to shorter dated

option

Option value is weighted sum of price undereach density in mixture

f(σi) is option price assuming normal distributionwith volatility σi

NB: NOT price at volatility of mixture distribution

)(...)( 11 nn f  f P σ  ρ σ  ρ  ++=

Option Pricing with

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 66/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 66

Normal Mixture 45 day Call option

$105 strike, $100 stock 

Normal mixture

 Vol1 = 15%

 Vol2 = 30%

Probability of jump = 0.5 “Expected” vol 22.5%

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 67/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 67

Normal Mixture Example

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

Strike

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 68/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 68

Jump Diffusion Brownian Motion with jumps

Poisson process

dq = 0 with probability (1-λ)dt dq = 1 with probability λdt

λ is the inter-arrival time of jumps

dq J dX dt 

S

dS)1( −++= σ µ 

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 69/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 69

Jump Diffusion ExampleJump Diffusion

0

20

40

60

80

100

120

140

160

        0  .

        0

        0  .

        9

        1  .

        7

        2  .

        6

        3  .

        5

        4  .

        3

        5  .

        2

        6  .

        0

        6  .

        9

        7  .

        8

        8  .

        6

        9  .

        5

        1        0  .

        3

        1        1  .

        2

        1        2  .

        1

        1        2  .

        9

        1        3  .

        8

        1        4  .

        6

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 70/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 70

Ito with Jump Diffusion Hold portfolio

Option and –∆ of stock 

Π =V(S,t) - ∆ S

If dq = 0 then ∆ = δ V/δS eliminates risk 

If there is a jump the portfolio changes byan amount that cannot be hedged away

dqS J t SV t  JSV dSS

V dt 

S

V S

V d  ))1(),(),((

2

12

222 −∆−−+⎟

 ⎠

 ⎞⎜⎝ 

⎛  ∆−∂∂

+⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ∂∂

+∂∂

=Π σ 

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 71/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 71

Pricing with Jump Diffusion Merton (1976):

if jump component is uncorrelated then jump risk should not be priced in

Since diversifiable Option value is weighted sum of n Black-

Scholes values

Weights are probability of n jumps

),;,()(

!

1

1

nn BS

nt 

n

r t SV t e

n

σ λ λ  ′′∞

=

∑ ])1[1( −+=′ J  E λ λ 

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 72/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 72

Jump Diffusion Option Pricing

Jump Diffusion vs Black-Scholes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

60 70 80 90 100 110 120 130 140

BS

JD

5/14/2018 Derivatives - Option Valuation - slidepdf.com

http://slidepdf.com/reader/full/derivatives-option-valuation 73/73

Copyright © 2000-2006 Investment Analytics Option Valuation Slide: 73

Summary: Option Valuation Binomial

Option replication Black-Scholes

Limiting case of binomial

Simple extensions Merton

Black 

More complex extensions Stochastic Volatility Extreme value

Jump models

Recommended