Density-Matrix Functional Theory (DMFT)...Density-Matrix Functional Theory (DMFT) [Zumbach, Maschke,...

Preview:

Citation preview

Density-Matrix Functional Theory (DMFT)[Zumbach, Maschke, J.Chem. Phys. 82 (1985) 5604 and further developments]

Matrix g:In the literature, it is denoted also as G or r1) called also one-matrix, one-particle spinless reduced density matrix,or just « density matrix ».

DMFT, T. Wesolowski, University of Geneva, 2016

1

Ho = T + Vee

Vext

Notation:

Admissible density matrices g:

set of matrices which are well-behaving in variational principle.Note the analogy with N-representability of electron density r1.

DMFT, T. Wesolowski, University of Geneva, 2016

2

Density-Matrix Functional Theory (DMFT)[Zumbach, Maschke, J.Chem. Phys. 82 (1985) 5604 and further developments]

Levy-Lieb universal functional

(note the similarity to the constrained search definitio of the functional FHK[r])

DMFT, T. Wesolowski, University of Geneva, 2016

3

Density-Matrix Functional Theory (DMFT)[Zumbach, Maschke, J.Chem. Phys. 82 (1985) 5604 and further developments]

Universal « Hohenberg-Kohn-like »functional in DMFT:

F[g] = T[g] + Vee[g] = T[g] + J[g] + Exc[g]

DMFT, T. Wesolowski, University of Geneva, 2016

4

Or to avoid confusion with Exc[r]=T[r] - Ts[r] + Vee[r]- J[r]:

F[g] = T[g] + Vee[g] = T[g] + J[g] + Oxc[g]

Density-Matrix Functional Theory (DMFT)[Zumbach, Maschke, J.Chem. Phys. 82 (1985) 5604 and further developments]

Theorem:

where

DMFT, T. Wesolowski, University of Geneva, 2016

5

g g

Density-Matrix Functional Theory (DMFT)[Zumbach, Maschke, J.Chem. Phys. 82 (1985) 5604 and further developments]

Variational principle

where,

The Lagrange multiplyier represents the constraint:

DMFT, T. Wesolowski, University of Geneva, 2016

6

Or as derived by Zumbach and Maschkein the appendix [J. Chem. Phys. 82, (1985) 5694]

Density-Matrix Functional Theory (DMFT)[Zumbach, Maschke, J.Chem. Phys. 82 (1985) 5604 and further developments]

Euler-Lagrange Equation for g

Approximating the functional Exc[g]

Admissible density matrices g can be represented as:

g(r’,r) = S ni fi*(r’)fi(r)

E[g] can be represented as a functional depending on {ni} and {fi}.

E[g] = E[{ni},{fi}]

A typical approximation to the Exc[g] component of E[g] has the form:

DMFT, T. Wesolowski, University of Geneva, 2016

7

Approximating the functional Exc[g] (1)

Müller, 1984:

Goeddeker & Umrigar, 1998:

Csányi&Arias, 2000:

Csányi, Goeddeker&Arias, 2002:

DMFT, T. Wesolowski, University of Geneva, 2016

8

DMFT, T. Wesolowski, University of Geneva, 2016

9

Piris, 2006:

Piris, 2006:

Approximating the functional Exc[g] (2)

DMFT, T. Wesolowski, University of Geneva, 2016

10

Baerends and collaborators, 1991-2005:

Approximating the functional Exc[g] (3)

DMFT results (1)atomization energies with approximated Exc[g]

N.N. Lathiotakis, M.A.L. Marques, J. Chem. Phys. vol. 128 (2008) 184103.

DMFT, T. Wesolowski, University of Geneva, 2016

11

DMFT results (2) correlation energies with approximated Exc[g]

N.N. Lathiotakis, M.A.L. Marques, J. Chem. Phys. vol. 128 (2008) 184103.

DMFT, T. Wesolowski, University of Geneva, 2016

12

DMFT results (3) waekly occupied levels

N.N. Lathiotakis, M.A.L. Marques, J. Chem. Phys. vol. 128 (2008) 184103.

DMFT, T. Wesolowski, University of Geneva, 2016

13

DMFT results (4) correlation energies with approximated Exc[g]

N.N. Lathiotakis, M.A.L. Marques, J. Chem. Phys. vol. 128 (2008) 184103.

DMFT, T. Wesolowski, University of Geneva, 2016

14

DMFT results (5) Benchmarking the Piris’ functional

Piris et al., . J. Chem. Phys. vol. 132 (2010) 031103

DMFT, T. Wesolowski, University of Geneva, 2016

15

Recommended