Delivery and verification - SASRO

Preview:

Citation preview

Institut für Radiotherapie

Delivery and verification

Peter Cossmann, PhDHead of Medical PhysicsInstitute for RadiotherapyRadiotherapy Hirslanden AGAarau&Zürich/Switzerland

2

Institut für Radiotherapie

Contents

� Historical milestones

� Delivery systems

� LINAC – the workhorse

� Respiration controlled delivery

� Verification approaches

� The use in clinical routine

� Current IGRT approaches

� Clinical Examples

3

Institut für Radiotherapie

1895 Discovery of x-rays - called Röntgen-Rays - by W. C. Röntgen

1896 First treatment of a bathing trunk nevus by Prof Freund, Wien

1898 First application of x-rays for the treatment of sk intumors

1914 First full-rotation treatment

1930 Development of the first linear accelerator by R. Wideröe in Zurich

1948 First clinical use of a Betatron (Electron cyclot ron)

1949 First clinical use of a linear accelerator

1952 First use of a cobalt unit

Historical milestones

4

Institut für Radiotherapie

1. X-ray unit

2. Cobalt unit

3. Linear accelerator

4. Intraoperative unit

5. Brachytherapy unit

6. Radioactive implants

Delivery approaches

5

Institut für Radiotherapie

Siemens Stabilivolt, 1919

Siemens Dermopan, 1967

Philips RT 250, 1953

X-ray units I: First systems

6

Institut für Radiotherapie

X-ray units II: Modern systems

Gulmay XStrahl 100 & 300

WoMed T300

7

Institut für Radiotherapie

Cobalt unit

MDS NordionTheratronPhoenix(1980)

MDS Nordion TheratronEquinox(2006)

UJP Teragam K01(2003)

8

Institut für Radiotherapie

Ring accelerator/CyclotronSiemens Betatron (1956)

BBC Asklepitron (1962)

9

Institut für Radiotherapie

Siemens Mevatron, 1974

Varian Clinac, 1978

Linear accelerator

10

Institut für Radiotherapie

A modern linear accelerator (LINAC)

Varian Clinac EX

11

Institut für Radiotherapie

Intraoperative unit I

Zeiss Intrabeam

12

Institut für Radiotherapie

Intraoperative unit II

Accent Xoft

13

Institut für Radiotherapie

Bebig Multisource Ir,Co (1991)

Bebig Curietron Cs (1983)

Sauerwein Gammamed Ir (1989)

HDR Afterloading

14

Institut für Radiotherapie

A modern HDR afterloading unit

Varian Gammamed Plus

15

Institut für Radiotherapie

Radioactive implants

Ruthenium-106

Iodine-125 for Prostate LDR

16

Institut für Radiotherapie

4Ergonomic

40.7 Sek. min beam activation time

4High dose rate: up to 1000/Min

4Fast & acurate beam steering

4Optimized movement controls

4Beam/dose stability

4Integrated system

Precision and stability of a LINAC

17

Institut für Radiotherapie

Gantryaccelerating section

Modulator standElectronics, Klystron

Analog indicator for collimator rotationcollimator position 0-360E°

Accessory trayElectron appl., blocks and

compensatorCollimator

variable positioning of jaws and MLC

Digital position indicationsshowing gantry parameters/visual control

PVI armRemotely retractable arm

PortalVision KassetteDigital cassette for digital port films

Manual table controlDirect

Patient couch4 axes (3 translation, 1 rotation)

Visible parts of a LINAC

18

Institut für Radiotherapie

Table rotation (360°E)IEC scale

Longitudinal (Y)

Lateral (X)

Isozentrum

Gantry rotation (360°E)IEC scale

collimator rotation (360°E)IEC scale

Vertical (Z)

Possible movements of a LINAC

19

Institut für Radiotherapie

Components of a LINAC

20

Institut für Radiotherapie

Monitor chambers

Energyswitch

Caroussel Electron gun

Beam/Bending Magnet

Real time Beam steering

Standing wave accelerating section

Target

Flattening filters andscatter foils

Asymmetricblades

A look into more detail

Multileaf collimator

21

Institut für Radiotherapie

4Digital dose rate control4Highly precise: electrons are injected puls controlled, i.e. only when HF wave is stable.

4Energy switch4Selection between two photon energies.

4Standing wave accelerating section4Electrons are linearly accelerated on a HF wave.4Hollow wave guide, ultra high vacuum. Series of hollow cylinders = cavities.

4Target4Electrons hit target: production of Bremsstrahlung radiation (photons)

4Real-time beam steering4Symmetry and intensity are stabilized.

4Beam/Bending Magnet4Beam bending, energy control.

4Caroussel4Holds flattening filter and scatter foils

4Flattening filter and scatter foils4Broadening of the beam.

4Unvented monitor chambers4Energy-, dose- and symmetry control

4Asymmetric jaws4Field size definition, EDW

Components

22

Institut für Radiotherapie

Accelerating section

23

Institut für Radiotherapie

Accelerating section with gun and target

Magnetron

Standard head

HF-Generator

Clinac 600 (Single energy-CLINAC)

24

Institut für Radiotherapie

Positiv

NegativE Maximum

λ

Time

t1

t3

t2

Vorwärts

Vorwärts

Vorwärts

Rückwärts

Rückwärts

Rückwärts

Standing wave acceleration

25

Institut für Radiotherapie

Beam Flatness und Symmetry control

Beam stability control - Underdose- Overdose- Energy per puls

MLC Position control.Beam off, if leaf deviation 1mm from defined position

≈Beam monitoring

26

Institut für Radiotherapie

ElektronenQuelle

Elektronen

Photonen

TransversalKorrektur

Target

1.) Energie Detector

2.) Vertikal Abweichung

3.) Transversal Abweichung

4.) Dosis Anzeige am Monitor

5.) Dosis Anzeige am Monitor

<

<

<

<

VerticalKorrektur

1

3

5

4

2

Dose and symmetry control I

27

Institut für Radiotherapie

E

B

A

F

G

C

D

H

e

Target

Transversal rechts

Transversal links

Im Strahlengang nach vornegerichtet

Im Strahlengang nach hintengerichtet

Dose and symmetry control II

28

Institut für Radiotherapie

41.5cm/sec leaf speed for dynamic treatments

41 cm leaf width at isocenter

42 x 40 leafs = 40 x 40 cm field size

4Add-on completely integrated and verified

Multileaf collimator (MLC)

29

Institut für Radiotherapie

Dose distributionMultileaf field

Dose distributionCerrobend block

TransmissionMultileaf field

Transmission Cerrobend block

MLC vs. block

30

Institut für Radiotherapie

45 mm leaf width around isocenter for 20 cm

440x40 field, 120 leafs, 80 @ 5 mm & 40 @ 10 mm

4All leafs are additionally backupped by the primary collimator

4All leafs can be moved over the field center (for IRMT).

120-leaf MLC

31

Institut für Radiotherapie

Monitor chamber

Collimator bladesY1,Y2

Collimator bladesX1,X2

MLC

Linac with MLC

32

Institut für Radiotherapie

2300CD, 5cm, Low ResLINAC: 2300 CDPhoton energy: 6 MVTarget film distance: 100 cmWater depth: 5.0 cmLeaf width: 1.0 cm x 1.0 cm

5.0 mm

9.5 mm

MLC-80 measurements

lower collimator

Multi-Leaf collimator

uppe

r co

llim

ator

33

Institut für Radiotherapie

5.0 mm

MLC-120 measurements

LINAC: 2300 EXPhoton energy: 6 MVTarget film distance: 100 cmWater depth: 5.0 cmLeaf width: 0.5 cm x 0.5 cm

uppe

r co

llim

ator

6.0 mm

lower collimator

Multi-Leaf collimator

34

Institut für Radiotherapie

4only possible with upper jaws

4same functionality as conventional hard wedges

4integrated and verified

4Similar approach: Siemens Virtual Wedge

Enhanced dynamic wedge (EDW)

Recommended