Cybersecurity Electronic and Communication Systems MIMO

Preview:

Citation preview

Dip. Ingegneria dell’Informazione, Univ. Pisa, Pisa, Italy

MIMO & 5G Cellular Communications

Marco Luisemarco.luise@unipi.it

Cybersecurity

Electronic and Communication Systems

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

2

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Multiantenna Systems 1: Reception Diversity

TX RX

• 1 transmitting antenna• 2 receiving antennas with

combining• No increase in bit-rate•DIVERSITY Gain = 3 dB

( ) ( ) ( )

1 1

m m mr s n= +

( ) ( ) ( )

2 2

m m mr s n= +

( )ks

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 2 1 2

2 2

+ += = + = +

m m m mm m m mr r n n

z s s n

At time mT…

( )mz

The noise variance is reduced by a factor 2

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

3

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Multiantenna Systems 2: Independent Channels

TX RX

• 2 transmittingantennas

• 2 receiving antennas• No mutual interference• No diversity gain•MULTIPLEXING GAIN x 2

The bit-rate is DOUBLED

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

4

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

MIMO Channel Modeling

TX RX

2 x 2 simple example with narrowband signals on a

frequency-flat channel at time mT, neglecting noise

(1)

ms

(2)

ms

(1)

mr

(2)

mr

11h

22h

21h

12h

The terms hij are just complex coefficients that modify the amplitude/phase of the transmitted symbols because the channel is non-frequency-selective !

( ) ( ) ( )

1 11 1 12 2

( ) ( ) ( )

2 21 1 22 2

m m m

m m m

r h s h s

r h s h s

= +

= +

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

5

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

MIMO-OFDM 1/2

How can we possibly havea narrowband channel at the high signaling rates of modern communications?

( ) ( ) ( )

1 11 1 12 2

( ) ( ) ( )

2 21 1 22 2

m m m

m m m

r h s h s

r h s h s

= +

= +

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

6

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

MIMO-OFDM 2/2

The flat MIMO channel isactually experienced on each single frequency

k/TMC of the subcarriersraster in OFDM

communications !

( ) ( ) ( )

1, 11 1, 12 2,

( ) ( ) ( )

2, 21 1, 22 2,

0,..., 1

= +

= −

= +

m m m

k k k

MC MC

m m m

k k k

MC MC

k kr H s H s

T Tk N

k kr H s H s

T T

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

7

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

General MIMO (Multiantenna) System

TX RX

H• NT transmitting antennas• NR receiving antennas• low-rate channels with

flat-fading• NR x NT channel matrix H

NTNR

The channels are “different” in SPACE

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

8

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

The complex-valued MIMO channel at time m

m m m= +r Hs w

( )

1

( )

2

( )

R

m

m

m

m

N

r

r

r

=

r

( )

1

( )

2

( )

T

m

m

m

m

N

s

s

s

=

s

Transmitted symbols vector Received (soft) symbols vector

( )

1

( )

2

( )

R

m

m

m

m

N

w

w

w

=

w

White noise vector

11 1

1

T

R R T

N

N N N

h h

h h

=

H

ChannelMatrix

• Independent (equi-power Rayleigh) Channels

• Spatially White equi-power noise

• Stationary channel(long coherencetime)

TX RX

H

NTNR

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

9

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Simple Examples

• Diagonal matrix (NR=NT): independent channels, max. multiplexing gain, no diversity gain

• NR x 1 matrix: conventional diversity reception, max. diversity gain, no multiplexing gain

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

10

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

MIMO Reception (spatial MUX)

m m m= +r Hs w

( )

1

( )

2

( )

R

k

k

k

k

N

r

r

r

=

r

( )

1

( )

2

( )

T

k

k

k

k

N

s

s

s

=

s

TX RX

H

NTNR

( )1 1 1ˆ ˆ ˆ− − − = = + = + = +m m m m m m m mz H r H Hs w s H w s w

•Need to know the channel matrix H

• H has to be non-singular•Possible noise enhancement→need to reduce constellation size

T RN N=

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

11

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

The MIMO Channel

• DIVERSITY gain by combination of multiple RX copies of the same signal with independent noise components(improves SNR)

• MULTIPLEXING gain by using multiple independentchannels with multiple TX/RX antennas (improves rate) but increases noise and increases bit-rate less thanexpected

SNR/Rate relation through capacity theorem

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

12

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

MIMO Capacity – Perfect CSI and Feedback Info 1/4

Compute the SVD of H:†=H UDV

=NR

NT

0

0

NT

Unitary Matrix

Unitary

Matrix

are the NT and the channels are DECOUPLED †eigen( )HH

RN=UU I

NR >NT

NR

TN=VV I

, uplink-like

H D

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

13

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

MIMO Capacity – Perfect CSI and Feedback Info 2/4

† † )(m m m m m m m m m= + = + = + = +U U UV VD D Dr Hs w s w s w s w

I am left with an equivalent set of NT independent (parallel) channels whose capacity is evaluated via the Shannon formula for

the AWGN channel

( )† †

m m m m m m = = + = +r r s Dw sDU U wU

and also

( ) ( ) ( ) , 1,..., = + =m m m

i i i i Tr d s w i N

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

14

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

MIMO Capacity – Perfect CSI and Feedback Info 3/4

S/P P/SV †U

1 0

0TN

d

D

d

=

If we want to actually “exploit” such parallel channels, we have to pre-code sm by V

before transmitting, and then post-process rm by U disregarding the excess NR-NT

useless channels

†=H UDV

sm

rm

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

15

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

MIMO Capacity – Perfect CSI and Feedback Info 3/4

2 2

2 2 21

log 1 , .

=

= + + =

TN

k kk

k k

d PC P const

d

Now, if the TX has knowledge of D then it can i) allocate different power on the different “virtual channels”, and ii) allocate it in an optimal fashion by WATER FILLING !

(independent channels)

S/P

sm

1P

TNP

1

TN

k TOT

k

P P=

=

Constraint:

V

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

16

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

MIMO Capacity – Perfect RX CSI & no TX Feedback

2 2

2 22 21 1

log 1 log 1 = =

= + = +

TT NN

k TOT k TOT

k kT T

d P d PC

N N

Cannot do water-filling – I just distribute power evenly, Pk=PTOT/NT:

22 † †

2 2eigen ( ) 1 eigen

= + = +

T

k TOT TOTk k k N

T T

d P Pd

N NHH I HH

BUT

† †

2 22 21

log eigen log det =

= + = +

T

T T

N

TOT TOTk N N

k T T

P PC

N NI HH I HH

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

17

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Ergodic MIMO Capacity (Telatar)

The entries hij of channel matrix are actually

ZERO-MEAN GAUSSIAN (Rayleigh Fading) independent of each other

What we have computed up to now has to be averaged over the channel realizations:

2 min( , ) 2E log det

= +

R TE N N

T

PC

NH I HH

2 2log det

= +

T

TOTN

T

PC

NI HH

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

18

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

An Example (Schlegel)

•vmobile = 50 km/h - mobile

receiver speed

•Ts = 1 ms – sampling

time

•R = 50 m - radius of

circle containing the

scatterers

•L = 2 km – separation

of TX and RX

•d = 5l - separation of

antenna elements

•f0 = 2.4GHz - carrier

frequency

•Es/N0 = 10dB - symbol

signal to noise ratio

2 x 2

8 x 8

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

19

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Time-, Space-, and Space-Time coding

COD/MOD

DEM/DEC

S/P P/SH

TX RX

Redundant (parity-check symbols) can be added in time (interleaved with information symbols), in space, by multiplexing them on the TX antennas with

information symbols, or BOTH: space-time codes.

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

20

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Space-Time Block Codes

ST

EncoderST

DecoderS/P P/S

H

= +R HS W

( ) 2 ( ) 2 2| | 1 , | | 2m m

i iE s E w = = =

(1) (2) ( )

1 1 1

(1) (2) ( )

2 2 2

(1) (2) ( )

T T T

M

M

M

N N N

s s s

s s s

s s s

=

S

TIME

SP

AC

E

Space-TimeCodeword

ksnd kr nz

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

21

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

(1) (1)*

(1) (2) 1 2

1 2 1 2(1) (1)*

2 12

− = = +

Sd dP

r r h h w wd d

R

The mother-of-all ST Block Codes (Alamouti)

*(1) (1) (2) (1)

1 1 1 2

*(1) (1) (2) (1)

2 2 2 1

s d s d

s d s d

= = − = = =

S

Designed for a NR=1 x NT=2 MIMO system (single RX antenna !!!)Coding rate: 1 in space, ½ in time, overall ½

BUT no bandwdith increase wrt 1 x 1 system with no coding

TX RX

1h

2h2 2

1 2| | | | 2+ =h h

Ps is the TOTAL transmitted power from the two antennas

Variance of noise terms: 2 2 2 2

1 2 02 / = = + =I Q sN T

Unit-power Constellation

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

22

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

The mother-of-all ST Block Codes (Alamouti)

*(1) (1) (2) (1)

1 1 1 2

*(1) (1) (2) (1)

2 2 2 1

s d s d

s d s d

= = − = = =

S

Received code block:

( ) ( )

(1) (1)*

(1) (2) 1 2

1 2 1 2(1) (1)*

2 1

(1) (1) (1)* (1)*

1 1 2 2 1 1 2 2 1 2

2

2 2

− = = +

= + + − + +

S

S S

d dPr r h h w w

d d

P Ph d h d w h d h d w

R

TX RX

1h

2h

2 2

1 2| | | | 2+ =h h

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

23

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Decoding the Alamouti code

The decoder needs (perfect) CSI to compute the sufficient statistics(soft symbols) Z for data detection

( ) ( )

(1) (1(1) (1) * (1)*

1 1 1 2

* *

(1) (1)* 1 2

1 2

2 2 (1)

1 2

) * (1)

2

2 1

*

2 1 2 1 2

2 2 (1)

1 2 21 1 2| | | | | |2

| |2

= = − = −

=

+

+ + +

+S S

z r hz r h h r

Ph h d

h r

Ph h d ww

h hr r

h hZ

where

* *

1 1 1 2 2w w h w h = + * *

2 1 2 2 1w w h w h = −

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

24

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Decoding the Alamouti code

The decoder needs (perfect) CSI to compute the sufficient statistics(soft symbols) for data detection

(1) (1) * (1)*

1 1

* *

(1) (1)* 1 2(1) (1) * (1)*

2 1 2 1 2

(1)

2 2

1 2 2

(

1 2

2 1

1)

1 122

22

+

= = − = −

=

+ + SS

z r h h rz r h h r

P

h hr r

h h

Pwd w d

Z

Where the new noise variances are

( )2 2 2 2 2

1 2 1 2 1 0| | | | 2 2 / = = + = sh h N T

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

25

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Where is the gain ?

• The signal power increases by

• The noise power increases by

•There are no CROSS TERMS between channels !

•TWO-FOLD GAIN DIVERSITY (3dB gain) as in a

conventional receive-diversity 2 x 1 system (requires

CSI !)

( )2

2 2

1 2| | | | 4+ =h h

2 2

1 2| | | | 2+ =h h

Can we GENERALIZE?

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

26

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

With two RX antennas (2 x 2 code)

* * * *

(1) (1) (1) (2)* (1) (2)*11 12 21 22

1 2 1 1 2 2

12 11 22 21

= = − + − − −

Zh h h h

z z r r r rh h h h

(1) (2) (1) (1)*1 1 11 12 1 2

(1) (1)*(1) (2)21 22 2 12 2

2

− = = +

Sr r h h d dP

h h d dr rR W

TIMETIME

SP

AC

ES

PA

CE

Show that we have FOUR-FOLD

diversity gain (but no mux gain)

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

27

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

MU MIMO / Space-Division Multiple Access (SDMA)

When the number of antennas is much larger than the number of users in the cell, we can also implement Multiple Access/Multiplexing by «synthesizing» multiple beams directed to spatially separated users: Multi-User MIMO (MU-MIMO)

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

28

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Massive MIMO

Lead to MASSIVE MIMO (very many antennas at the BTS or AP)

2 2E log det

= +

T

TOTE N R T

T

PC N N

NH I H H

2 2E log det

= +

R

TOTE N R T

T

PC N N

NH I HH

NT→ (Downlink): MUX gain only

NR→ (Uplink): MUX and DIV gain

† →RT NNHH I

† →TR NNHH I

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

29

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Massive MIMO

Lead to MASSIVE MIMO (very many antennas at the BTS or AP)

NT→ (Downlink): MUX gain only

NR→ (Uplink): MUX and DIV gain

2 2log 1

= +

TOTE R

PC N

2 2log 1

/ ( / )

= +

TOTE T

R T

PC N

N N

2 2E log det

= +

T

TOTE N R T

T

PC N N

NH I H H

2 2E log det

= +

R

TOTE N R T

T

PC N N

NH I HH

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

30

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Beyond-4G technologies (1/3)

Basics of beyond-4G technologies

Do we really need 5G?

o over 50%/year growth in data traffic

o at least, a 1000× increase every decade

o in 2018, global traffic will reach more

than 1/100 of a zettabyte (1 ZB=1021 B)10

×in

cre

ase

in f

ive

ye

ars

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

31

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Beyond-4G technologies (2/3)

Basics of beyond-4G technologies

According to CISCO, mobile data traffic will reach the following milestones within

the next five years:

o monthly global mobile data traffic will

surpass 15 exabytes by 2018

o the number of mobile-connected devices

will exceed the world’s population by 2014

o the average mobile connection speed will surpass 2 Mb/s by 2016

o due to increased usage on smartphones, smartphones will reach 66% of

mobile data traffic by 2018

o tablets will exceed 15% of global mobile data traffic by 2016

o 4G traffic will be more than half of the total mobile traffic by 2018

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

32

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Beyond-4G technologies (3/3)

Basics of beyond-4G technologies

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

33

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Technology drivers

Basics of beyond-4G technologies

o network densitification

o massive MIMO

o mm-wave technology

and many more: full-duplex antennas, spectrum sharing, advanced PHY and

interference management, device-to-device (D2D) communications, etc.

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

34

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Network densification (1/3)

Basics of beyond-4G technologies

Cooper’s “law”: the wireless capacity has doubled every

30 months over the last century in the last fifty years,

capacity has increased about a million times!

5× 5× 25×

1600×

The right path to pursue is

network densification: very

dense deployment of BTSs

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

35

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Network densification (2/3)

Basics of beyond-4G technologies

Shannon’s law:

number of antennas

bandwidth

adaptive coding and modulation, interference

management

With extreme network densification, we can reuse Shannon’s law

everywhere, thus increasing the area spectral efficiency (in b/s/Hz/m2)

heterogeneous, multi-tier

dense networks: small cells,

relays, etc.

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

36

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Network densification (3/3)

Basics of beyond-4G technologies

Open challenges include:

o self-organization, exacerbated by

random/unplanned deployment of small cells

o coverage and performance predicition:

stochastic geometry and random matrix

theory could serve as powerful tools

o interference management and resource

allocation, also considering the presence of

multiple tiers

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

37

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Massive MIMO (1/2)

Basics of beyond-4G technologies

Massive MIMO (a.k.a. as multiuser MIMO) technology:

antennas

(hundreds)

single-

antenna terminals

The massive MIMO concept relies on the law of large numbers, to average

out frequency selectivity and thermal noise:

o spatial multiplexing gain

o array gain

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

38

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Massive MIMO (2/2)

Basics of beyond-4G technologies

In the uplink, the BTS:

o acquires CSI from pilot symbols

o detects the information symbols

o since , adopts linear

processing techniques (MRC, ZF,

MMSE), which are nearly optimal

In the downlink, the BTS:

o uses CSI obtained in the uplink

o applies multiuser MIMO precoding,

using low-complexity precoders

o Thanks to the unused degrees of freedom, massive MIMO can obtain:

• hardware-friendly waveform shaping

• PAPR reduction due to multiuser precoding

o The major challenge is getting accurate CSI estimation

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

39

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

mm-wave technology (1/2)

Basics of beyond-4G technologies

Increasing the carrier frequency increases the path loss

However, network densification includes small cells with coverage radius

path loss becomes acceptable

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

40

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

mm-wave technology (2/2)

Basics of beyond-4G technologies

o mm-waves can provide a brand-new, very wide frequency band, with

very high-gain steerable antennas at both the MS and the BTS sides

o we can augment the currently saturated 700 MHz – 2.5 GHz radio

spectrum, moving to 60 GHz

o due to very low wavelengths, we can

accommodate the antennas required

by massive MIMO

Wireless channel modeling is not valid anymore: research challenges

include new propagation models for mm-wave communications

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

41

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

MMIMO Antennas

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

42

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Structure of the LTE-A frame

4G systems

15=scf kHz

2048 , 847= =vN N

1201 15 18= =RFB MHz

Nominal Channel BW: 20 MHz

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

43

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Summary of LTE PHY Parametrs

Ele

ctr

on

ic a

nd

Co

mm

un

ica

tio

n T

ec

hn

olo

gie

s

Cy

be

rse

cu

rity

Marco LuiseMIMO & 5G Cellular Communications

44

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

New Radio: the Radio Interface of 5G

• CP-OFDM format, both UL and DL, plus SC-FDMA for UL

• QAM constellations up to 256-QAM

• Multiple carrier spacing: Df=2m x 15 kHz, where m=0,1,2,3,4 is the so-callednumerology

• 1 slot=14 OFDM symbols (twice as many as in LTE)

• (I)FFT size 2048 or 4096

Recommended