CRAMER-RAO INEQUALITY INEQUALI… · in one observatio n . i .e . I ( T ) nI ( T ) Fisher...

Preview:

Citation preview

CRAMER-RAO INEQUALITY

CRAMER-RAO INEQUALITY

Syllabus:

• Statement and proof of Cramer-Rao inequality

• Definition of minimum variance bound unbiased

estimator (MVBUE) of f().

• Proof of the following results .

• 1) If MVBUE exists for , then MVBUE exists

for f() , provided f is linear function.

• 2) If T is MVBUE for f() , then T is sufficient for

f() .

• If T is an unbiased estimator of satisfying

regularity condition, then T satisfies the

relation

CRAMER-RAO INEQUALITY

Syllabus ………..Continue

ninformatiofishertheisIwherenI

TVar )(;)(

1)(

• Examples and problems

Comparing estimators :

• Unbiased estimators can be compared via their variances and biased

estimators by comparing mean square errors. (Generally unbiased

estimators are preferable. )

• We can compare several unbiased estimators and find which one has

smallest variance, but this does not allow us to tell if an estimator has the

smallest variance amongst all unbiased estimators

• The Cramer-Rao lower bound provides a uniform lower bound

on the variance of all unbiased estimators of f = g( ).

• So if the variance of an unbiased estimator is equal to the

Cramer-Rao lower bound it must have minimum variance

amongst all unbiased estimators (so is said to be a minimum

variance unbiased estimator of f ).

CRAMER-RAO INEQUALITY : Statement

• Let X1, X2,….. Xn be a random sample from

f(x;), . Assume is a subset of the

real line. Let T=u(X1, X2,….. Xn ) be an

unbiased estimator of k(). Assume f(x;)

satisfies the regularity conditions, then

2

2

);(ln

)(

xfnE

kTVar

Regularity Conditions:

allandxallforexistsxfln );()1

n

nidxdxdxxf

1

21........;......)2

n

nidxdxdxxf

1

21........;......

n

nindxdxdxxfxxxt

1

2121........;),.....,(......)3

n

nindxdxdxxfxxxt

1

2121........;),.....,(......

inallforxfE

2

);(ln0)4

Proof : We have );().......;(1

nxfxf

2

2

1

1);();();();(

j

j

j

jxfxfxfxf

nj

jnxfxf );();(..........

2

22

21

11

1

);();();();(

1);();();(

);(

1

j

j

j

jxfxfxf

xfxfxfxf

xf

nj

jnn

n

xfxfxfxf

);();();();(

1..........

=

n

j

j

n

j

jxfxf

11

);();(ln

1

2

1

1);();(ln);();(ln

j

j

j

jxfxfxfxf

1

);();(ln..........

j

jnxfxf

Let T=u(X1, X2,….. Xn ) be an unbiased estimator of k() so

)(,....,)(21

kXXXuETEn

casecontinuoustheinisThat

......);().......;(),....,,(....)(21121 nnn

dxdxdxxfxfxxxuk

......);().......;(),....,,(....)(

21121 nnndxdxdxxfxfxxxuk

......);().......;(),....,,(....)(

21121 nnndxdxdxxfxfxxxuk

....);();(ln),..,,(...)(

21

11

21 n

n

j

j

n

j

jndxdxdxxfxfxxxuk

TZEkso )(

0);(...,1);(

xfgetwetrwderivativetakingdxxfNow

0);();(

);(

dxxfxf

xf

aswrittenbecanexpressionlatterThe

0);();(ln

dxxfxf

According to above we have

0);(ln);(ln

)(

11

nj

nj

xfE

xfEZE

,);(lnvar

1

n

j

jxfbyZiablerandomtheDefine

,variancesntheofsumtheisZofvarianceHence

2

);(ln)(

xfnEZVar

2

);(ln

xfEeh variancuently witand conseqmean zero

h each wit r.v. n indep. ofis the sum Z Moreover,

ZTZETETZEthatRecall )()()(

0)(),()(,)()( ZEkTEkTZESince

ZT

ZT

korkkhaveWe

)(0).()(

1

)()(

)(,11,1

2

2

ZVarTVar

kHencebecauseNow

2

22

;(ln

)()(..,)(

)(

)(

xfnE

kTVarhaveweeiTVar

ZVar

kor

.);();(ln

)(.)('

)(,);(ln

:

2

2

dxxfxf

IisThataboutninformatiosfisher

calledisIbydenotedxf

EexpressionTheDefinition

.

,

.);();(ln

)()(2

2

expressionsecondtheprefer

weoftenbutotherthethancomputetoeasierisexpressiononeSometimes

dxxfxf

IfromcomputedbecanI

)()(... nIIeinobservatioonein

ninformatiofisherthetimesnisnsizeofsamplerandomainninformatioFisher

n

)(

)()(

2

nI

kTVarbecomesInequalityRaoCramerSo

)(

1)(,1)(

)(

nITVarksince,becomesinequality

RaoCramerthethen,kthatso,θofestimatorunbisedanisTIf

Minimum Variance Bound Unbiased Estimator (MVBUE):

An unbiased estimator T of a parameter k() is called an MVBUE if Var(T)

attains Cramer-Rao lower bound.

.)(

)(

)()(,),()(ln

,)(

.

MVBUEbetokparameterofT

estimatoranforconditionsufficientandnecessarythethereforeisThis

A

kTVarkTAL

relationthesatisfymustitthenkparametertheofMVBUEisTIf

MVBUEtheforCriterion

)(

1)(

)()2

)(

)()(

)()()()1

:

2

nITVar

andTEifMVBUEbetosaidisofTestimatorAn

nI

kTVar

andkTEifMVBUEbetosaidiskofTestimatorAn

wordsotherIn

Result: If MVBUE exists for , then MVBUE exists for

k(), provided k is linear function.

:Pr oof

)(

1)()(,

nITVarandTEHenceMVBUEisTLet

bakandbaTTkLet )()(

)()(

)())((())((

22

nI

a

nI

kTkVarandbaTkEshowtohaveWe

)()()1 TESincebabaTE

)(

1)(

)(

1)()()2

22

nITVarsince

nIaTVarabaTVar

.)(kforexistMVBUEHence

Result : An MVBUE of a parameter k() must be a sufficient

statistic for k()

Proof:

)(

)()(,),()(ln

,)(

A

kTVarkTALrelation

thesatisfymustitthenkparametertheofMVBUEisTLet

getweCdAwritingandpartsbytrwitgIntegratin )()()(...

)()()()()()(ln xBdCkCkxTL

)()()()()(ln xBDCkxTL

)(

)(

),())(();(

kparameter

forstatisticsufficientaisXTthionfactorizat

NeymanbyfindwexhxtgxLwithitCompare

m

)()()()()(exp xBDCkxTL

)(exp)()()()(exp xBDCkxTL

.

,,),,(22

ofMVBUEtheismeansamplethe

thatshowknownisandwhereNFor

x

xxfSolution

2

2

2 2

)(exp

2

1);(:

2

22/1

2

2

)(2ln);(ln

xxf

2

2

2

2

)(2ln

2

1);(ln

xxf

222

)1)((2);(ln

xxxfThus

22

2

22

21

);(ln)(;1

);(ln

xfEIxfand

Example 1:

)(

1)(

)(

nITVar

andTEifMVBUEbetosaidisofTestimatorAn

),(~)(

2

nNXsinceXE

nXVar

2

)(

2

1

n

2

1)(

)(

1

Ibecause

nI

forMVBUEisXHence

.),,1(~ forMVBUEisXthatshowBXLet

1,0)1();(:1

xxfSolutionxx

)1ln()1(ln);(ln xxxf

1

1);(ln

xxxfThus

22222

2

)1(

)()1()(

)1(

)1();(ln)(

XEEXEXXE

xfEI

222

2

1

1);(ln

xxxfand

)1(

1

)1(

)1(

1

11

)1(

1)(..

22

Iei

Example 2:

)(

1)(

)(

nITVar

andTEifMVBUEbetosaidisofTestimatorAn

),(~1

)(

1

1 nBXsincen

nn

X

EXE

n

i

i

n

i

i

)1(

1)(

)(

1

Ibecause

nI

forMVBUEisXHence

)1(

1)1()1(

1)(

2

1

nnn

nn

X

VarXVar

n

i

i

.)(~ forMVBUEisXthatshowPXLet

,.........4,3,2,1,0!

);(:

xx

exfSolution

x

!lnln);(ln xxxf

1);(ln

xxfThus

1)();(ln)(

2222

2

XEXE

xfEI

22

2

);(ln

xxfand

Example 3:

)(

1)(

)(

nITVar

andTEifMVBUEbetosaidisofTestimatorAn

)(~1

)(

1

1 nPXsincen

nn

X

EXE

n

i

i

n

i

i

1)(

)(

1 Ibecause

nI

forMVBUEisXHence

nnn

nn

X

VarXVar

n

i

i11

)(2

1

.)(~ forMVBUEisXthatshowPXLet

Example 3: (Alternative approach)

.)(

)(

)()(,),()(ln

,)(

.

MVBUEbetokparameterofT

estimatoranforconditionsufficientandnecessarythethereforeisThis

A

kTVarkTAL

relationthesatisfymustitthenkparametertheofMVBUEisTIf

MVBUEtheforCriterion

,.........4,3,2,1,0!

);(

xx

exf

x

!lnln);(ln xxxf

);(...).........;();(21

n

xfxfxfL

);(............);(ln);(lnln21

n

xfxfxfL

);(lnln i

xfL

)!ln(ln)(ln)!ln(ln)(ln xxxfsincexxnLii

ix

nL

ln

xnnL

ln

x

nLln

)()(ln

kTALwithCompare

)(

1

)(

)()(.

AA

kTVarSinceofMVBUEanisXTthatfindWe

n

.,

),(2

knownbeingexistsondistributi

NofparametertheofMVBUEthewhetherDetermine

Example 4

.)(

)(

)()(,),()(ln

,)(

.

MVBUEbetokparameterofT

estimatoranforconditionsufficientandnecessarythethereforeisThis

A

kTVarkTAL

relationthesatisfymustitthenkparametertheofMVBUEisTIf

MVBUEtheforCriterion

2

)(exp

2

12

1

2

i

n

i

xL

Let

2

)(exp

2

12

i

n

xL

2

)(2ln

2ln

2

ixn

L

2

2)(

2

1

2ln

i

xn

L

)()(ln

kTALwithCompare

nAA

kTVarSince

ofMVBUEanisn

xTthatfindWe

i

2

2

2

)(

1

)(

)()(

.)(

2

2)(

2

1

2

i

xn

nn

n

xn i

2

2

)(

2

Definition 1 : Let T be an unbiased estimator of a parameter in

such a case of point estimation. The statistic T is called an efficient

estimator of if and only if the variance of T attains the Cramer-

Rao lower bound.

Definition 2: In cases in which we can differentiate with respect to

a parameter under an integral or summation symbol, the ratio of

the Cramer-Rao lower bound to the actual variance of any

unbiased estimator of a parameter is called the efficiency of that

statistic.

.1

.),,(

1

2

2

ofn

nSestimatortheof

efficiencytheisWhatknowniswhereNisthatondistributi

afromnsizeofsamplerandomaofvarincethedenoteSLet

1

)4(.2

:

2

2

n

nSEthatknowWe

exampleRefern

isboundlowerCramerSolution

)1(2var~

2

2

1

2

nisnS

ofiancethesonS

Nown

)1(2)1(

)1(,

2

n

n

nSnVaryAccordingl

1

2

)1()1(2

)1(

)1(..

222

2

2

nn

nSVarn

n

nSVar

nei

n

n

n

nisn

nSestimatortheofefficiencytheThus

1

1

2

2

12

2

2

Recommended