CO Capture From Air - Inference2. Thermodynamics of CO. 2. capture. Free energy of mixing: To get 1...

Preview:

Citation preview

11

CO2

Capture From Air

David Keith 

keith@ucalgary.ca

• www.ucalgary.ca/~keithDirector, Energy and Environmental Systems Group

Institute for Sustainable Energy, Environment and Economy

University of Calgary

MIT Carbon Sequestration Forum

16 September 2008

Cambridge MA

2

Thermodynamics of CO2

capture

Free energy of mixing: 

To get 1 bar CO2

it takes:~ 5 kJ/mol starting at 14% CO2

in a power plant exhaust.~ 11 kJ/mol getting the last 10% of CO2

in a power plant exhaust.~ 20 kJ/mol starting at the 380 ppm

ambient atmospheric concentration

Compression from 1 to 100 bar ~13 kJ/mol

Carbon from fuels: Burning C & CH4

produces

394 & 890 kJ/mol‐C respectively. 

Current amine technology: ~130 kJ/mol @ ~100 C  (?)NaOH

thermodynamic limit: ~108 kJ/mol

At 400 ppm

& STP: 100 Pa= 5.6 kJ/mol= 13 m sec‐2

100 kJ/mol‐C =  2.27 GJ/t‐CO2

=  630 kWhr/t‐CO2

0ln pkT p⎛ ⎞⎜ ⎟⎝ ⎠

3

…but thermodynamics is irrelevant

Excerpt from response to reviews ofKeith, D. W., Ha‐Duong, M., & Stolaroff, J. K. (2006) Climate strategy with CO2

capture from the air Climatic Change

74:

17‐45.

4

50

40

30

20

10

Mt CO2

/yr 

150 1000 2000 104 105

Source:  Kurt Zenz House, Alliance Bernstein

Number of Point Sources

150 largest coal power plants emit ~10% of global CO2

The next 1000 largest point sources account for the next ~30%

The next 7000 account for the next ~ 15%

Distributed and mobile sources account for nearly half

of all emissions.

Air capture  centralized control of diffuse emissions

5

Building air capture on conventional process technologies

66

AC Research at U‐Calgary and CMU 2002‐2008

2002‐2005: Technology assessment, negative emissions & optimal climate policy.

2003 (May): CMU‐LLNL‐Columbia meeting

2005: Spray tower experiment at UofC. Early cost estimation for Ca Cycle.

2007: Banff meeting

2007: Work on alternative methods of caustic recovery (B & Ti, Mg).

2007: Analysis of advanced spray systems. Costing. Coalescence modeling. 

Charged particles.

2007‐08 (winter): Titanate conceptual process design (Provisional patent filed).

2008 (spring & summer): Experiments on simultaneous leaching & precipitation.

2008 (Feb‐July): Packed tower design and experiments.

2008 (September): First‐order process simulation model  converged.

7

Contacting

8

A

A

2005 spray tower

9

But, this was with ~100 µm dropsand we now know we can make ~20 µm dropsat low capital and energy cost.

10

2008 packed tower

11

1212

Circuit Board

Electronics

Electrical

Fluid

Connections

RH and 

Temperature

CO2 analyzer 

intake

CO2 analyzer

Digital Sensors Analog Sensors

Differential 

Pressure

Air Velocity

Liquid Flowrate

Liquid Pressure

Liquid Sample

Tall stack Short stack

Dimensions

Height 6m 4.8m

Diameter 1.2 m

Inlet 0.6 m

Packing Height 2.6 m 1.5 m

Operating Volume 350 – 450 L

Fluid Flow Range 1.9 ‐

6.3 L/s

Air Flow Range 0.5 – 3 m/s

Packing Sulzer 250X

1313

Intermittent operation

Steadystate

Cyclicoperation

15%

We get ~86% of peak performance with ~5% fluid pump duty cycle 

14Time [s]

Time [s]

Intermittent operation 2: KOH and cyclic

1515

2008 packed tower results

At 1.25 m/sec

ΔP across full tower: 67 Pa•

ΔP packing 39 Pa•

Fan efficiency (shaft to air) 41% (It is ~70% at design point)

Typical CO2 

concentrations:  375 ppm

at inlet 150 ppm

at outlet.

Typical fluid flow rate: 5 L/s

Longest continuous operating period ~8 hr.

Capture rate: 15 t‐CO2/m2‐year

Cyclic operation essentially eliminates caustic pumping work.

ΔP=60 Pa, ΔCO2=175 ppm and 60% pump efficiency   81 kWhr/t‐CO2

16

Packed tower  packed pancake

17

Contactor design constraints

Low air velocity & Low pressure drop  minimize energy cost

Low cost materials  &  High capture rate   minimize capital cost

In practice, must hold velocity  under about 10 m/sec2

to keep PV work under 

~30 kWhr/tCO2 

counting fan efficiency. 

Contamination insensitive surfaces

Silicate dust

Organics (e.g., soaponification

of  mosquitoes)

Sulfur

18

Conceptual design: 

Intermittently‐wetted cross‐flow slabReversible fans 

Follow ambient wind 

Packing with vertically oriented plates. 

Orthogonal liquid and gas flows

Optimized for intermitted liquid flow 

Maximize hold up.

Sectionalized

Air flow can be stopped when fluid is flowing to minimize loss. 

Sections operate asynchronously so pumps can operate continuously.

Compared to the horizontal slab:

Minimizes footprint and total structure size per unit of capacity to 

reduce capital cost.

Reduces peak velocity, improving efficiency. 

Enables the packing to be operated at higher peak velocities further 

reducing capital costs. 

air gap

fan wall

Basin

packing& fluid distribution

>100 m

10‐20 m

prevailing wind

air flow ~2‐5 m/sec

19

20

Contactor costing

Economic assumptions Base Better WorseCCF 15% 15% 15%O&M 5% 5% 5%Electricity cost ($/MWhr) 80 60 110 Cost of low-C electricity. Likley integate with recovery.

Contactor assumptionskWhr/t-CO2 100 80 150 Compare to "cross-flow contactor assumptions' below

Overall costingCost of packing + distributor ($/m^2) 1000 500 2000 500X is $5k/m2 at 1.5 m in small lots.Cost of structure ($/m^2) 500 300 1000 From Nexen and PCL for the spray structure scaled by 1:1 height:width ratioCost of pumps ($/m^2) 4 4 7 300 $/kW fluid pump costCost of fans ($/m^2) 206 165 309 500 $/kW blower cost (Kenton's correlation to listed costs Sept '08)Total ($/m^2) 1710 968 3316

Annual (tCO2/yr) 24 24 24

Capital cost ($/tCO2) 14.1 8.0 27.3Energy cost ($/tCO2) 8.0 4.8 16.5Total cost ($/tCO2) 22.1 12.8 43.8

Cross-flow contactor assumptionsCapture rate 200 ppm Our tests were 150-250 rangeAir velocity 2 m/sectCO2/m^2-yr 24Delta-P 75 Pa Our tests ~50 Pa at 1 m/sec. Will change with new design.Flow rate 0.4 mm/sec Cyclic operation at a 10% duty cycleFan eff 65%Pump eff 75%Fan power (W/m^2) 231 PV/fan-eff per unit of contactor slabPump power (W/m^2) 8 mgh/pump-eff assuming 1.5 head/height-ratiokWhr/t-CO2 86

21

Caustic recovery

22

ΔH =  65/90 kJ/mol‐C depending if you are below/above the Na2CO3 melting point, net about 90 kJ/mol‐C in either case.

Literature talks about solid‐solid reactions, but we think its solid TiO2 with carbonate melt.

Above 840°C, the conversion rate reported to be 100%.

Molar ratio (TiO2/Na2O) should be high enough (above 0.5) to prevent alkali in gas stream

Chemical Recovery: The titanate cycle

2 2 2 22(s) 3(s) (s) 2(g)5Na O 3TiO +7 Na CO 3(4Na O 5TiO ) +7CO→i i

s aq s2 2 2 2 23(4Na O 5TiO ) +7H O 14NaOH +5(Na O 3TiO )→i i

22

About 15.2 kJ/mol‐C at ~100 C.

Can produce NaOH concentrations > 4 M

23

Solubility of Na2

CO3

in water and NaOH(aq)

23

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40 50 60 70 80 90 100 110 120

Na2CO

3, mol/L

Temperature, °C

water

NaOH 1.5M

NaOH 3M

NaOH 5M

Na2

CO3

.10H2

O Na2

CO3

.7H2

O Na2

CO3

.H2

O Na2

CO3

Solubility swing  anhydrous

Temp swing  deca

24

Process design overview

Solubility swing  anhydrousTemp swing  deca

25

Simultaneous leaching and precipitation

25

Can we leach  4Na2

O•5TiO2

to make NaOH

& Na2

O•3 TiO2

while simultaneously 

driving the Na2

CO3

out of solution?

There are other routes to isolating anhydrous Na2

CO3

, but simultaneous leaching 

and precipitation greatly simplifies our process design.

26

Process model (1‐3)

VMG process simulator (www.virtualmaterials.com)

Custom titanate thermodynamics.

Custom Na2CO3  solubility model.

27

Process model (4‐5)

2828

29

Ti process enthalpy and exergy

summary

30

Economics

With 75% HX efficiency Ti process requires ~3 GJ/t‐CO2

@ 850 C •

50 to 75 C cooler than Ca process (a big deal for steel performance).•

~50% less thermal energy that the Ca process.•

Enthalpy requirements near the thermodynamic limit for NaOH.

At just under 100 kWhr/t‐CO2 

the energy cost for contactor is similar to energy 

cost for CO2

compression from 1 to 15 MPa.

Even with gas at 10 $/GJ the energy cost for the full process of

order 50 $/t‐CO2

.

Turning CaCO3

to

CaO

is a similar process to 5Ti  3Ti, except it uses half as much energy per mol carbon.Market prices of lime and limestone  cost of calcination now1 ~65 $/t‐CO2.If energy was 50% of current prices (a guess)  Ti should be ~ 50 $/t‐CO2.

Capital cost will be the driver. 

1. 2004 prices. 

31

Where next?

32

Next steps

1.

Refine and exercise process model.

2.

5Ti  3Ti kinetics as a function of T, pCO2 and particle size.

3.

Crystalactor

design and kinetics for Na2

CO3

• 10 H2

O.

4.

Continued testing of simultaneous leaching and crystallization.

5.

Contactor design study

CFD study of interaction with external winds.

Packing optimization study.

First‐order design and costing of a 1 Mt‐CO2

/yr unit.

6.

Kiln scoping study

Kiln designs for indirect heating with 0.1 mm particles.

Fueling options: NG, oxyfuel, coal indirect, nuclear. 

7.

Contaminant chemistry.

8.

Titanate loss mechanisms and particle reactivity control

33

Air Capture: Implications for long‐term climate policy

Air capture can fundamentally alter the dynamics of climate mitigation:

its price caps the cost of mitigation across the economy. 

It allows the removal of CO2

after emission 

Permits reduction in concentrations more quickly than can be achieved by the natural carbon cycle. Net emissions can be negative. 

It removes one of the central irreversibility's of the CO2‐climate problem. Leakage from reservoirs becomes simply a future cost.

It is (somewhat) decoupled from the rest of the energy system 

returns‐to‐scale may be better than for conventional mitigation. 

Keith, D. W., M. Ha‐Duong, J. K. Stolaroff

(2006). "Climate strategy with CO2 capture from the air.“

Climatic Change

74: 17‐45.

34

Concentrations

300

350

400

450

500

550

600

650

700

2000 2050 2100 2150 2200 2250

ppm

v C

O2

Year

Unlucky

Lucky

Reference

Air cap

Air cap

Keith, D. W., M. Ha‐Duong, J. K. Stolaroff

(2006). "Climate strategy with CO2 capture from the air.“

Climatic Change

74: 17‐45.

35

Carbon neutral hydrocarbons

Zeman, F. S. and D. W. Keith (2008) "Carbon Neutral Hydrocarbons." Philosophical Transactions of the Royal Society (A).

36

CNHC’s

VS Hydrogen

Zeman, F. S. and D. W. Keith (2008) "Carbon Neutral Hydrocarbons." Philosophical Transactions of the Royal Society (A).

37

People

Josh Stolaroff

(CMU): Spray tower, engineering, economics and management.Greg Lowry (CMU): Spray tower, engineering, economics and management.Kenton Heidel: 2005 & 2008 tower & process engineering.Leif Prebeau‐Menezes: 2005 tower.Brian Cox: Spray technology & Spray chargingMaryam Mahmoudkhani: Caustic recovery chemical engineering.Robert Cherry (INL): Process design, management and guidance.Frank Zeman (Columbia): Hot slaking, process design and economics.Baciocchi  Renato (University of Rome, ETH): 2008 tower process design. Alessandro Biglioli: 2008 tower project management. Mike Foniok: 2008 tower.Brandon Hart: 2008 tower.Christelle Guillermier: 2008 towerCarolyn Ladd: Crystallization and leaching laboratory chemistry.Curtis Berlinguette: Crystallization and leaching laboratory chemistryMarco Satyro: UofC

& VMG, process simulation)Julian Ferreira: Process simulation

38

Air Capture Papers

Mahamoudkhani, M. and D. W. Keith (submitted) "Low‐energy sodium hydroxide 

recovery for CO2

capture from air." International Journal of Greenhouse Gas 

Control Technologies.

Zeman, F. S. and D. W. Keith (2008) "Carbon Neutral Hydrocarbons." 

Philosophical Transactions of the Royal Society (A).

Stolaroff, J. K., D. W. Keith, et al. (2008). "Carbon dioxide capture from 

atmospheric air using sodium hydroxide spray." Environmental Science & 

Technology 42: 2728‐2735.

Keith, D. W., M. Ha‐Duong, J. K. Stolaroff

(2006). "Climate strategy with CO2

capture from the air." Climatic Change

74: 17‐45.

Stolaroff, J., D. Keith, et al. (2006). A pilot‐scale prototype contactor for CO2 

capture from ambient air: cost and energy requirements. GHGT‐8, 8th 

International Conference on Greenhouse gas Control Technologies 

Trondheim, Norway.

Stolaroff, J. K., G. V. Lowry, D.W. Keith. (2005). "Using CaO‐

and MgO‐rich 

Industrial Waste Streams for Carbon Sequestration." Energy Conversion and 

Management

46: 687‐699.

3939

Recommended