Chapter 4/5 Part 2- Trig Identities and Equations unit 5 lesson package STUDENT-2.pdfChapter 4/5...

Preview:

Citation preview

Chapter4/5Part2-TrigIdentities

andEquations

LessonPackage

MHF4U

trevorjensen
Stamp

Chapter4/5Part2OutlineUnitGoal:Bytheendofthisunit,youwillbeabletosolvetrigequationsandprovetrigidentities.

Section Subject LearningGoals CurriculumExpectations

L1 TransformationIdentities

-recognizeequivalenttrigexpressionsbyusinganglesinarighttriangleandbyperformingtransformations

B3.1

L2 CompountAngles -understanddevelopmentofcompoundangleformulasandusethemtofindexactexpressionsfornon-specialangles B3.2

L3 DoubleAngle -usecompoundangleformulastoderivedoubleangleformulas-useformulastosimplifyexpressions B3.3

L4 ProvingTrigIdentities -Beabletoproveidentitiesusingidentitieslearnedthroughouttheunit B3.3

L5 SolveLinearTrigEquations

-Findallsolutionstoalineartrigequation B3.4

L5 SolveTrigEquationswithDoubleAngles

-Findallsolutionstoatrigequationinvolvingadoubleangle B3.4

L5 SolveQuadraticTrigEquations

-Findallsolutionstoaquadratictrigequation B3.4

L5 ApplicationsofTrigEquations

-Solveproblemsarisingfromrealworldapplicationsinvolvingtrigequations B2.7

Assessments F/A/O MinistryCode P/O/C KTACNoteCompletion A P PracticeWorksheetCompletion F/A P Quiz–SolvingTrigEquations F P PreTestReview F/A P Test–TrigIdentitiesandEquations O B3.1,3.2,3.3,3.4

B2.7 P K(21%),T(34%),A(10%),C(34%)

L1 – 4.3 Co-function Identities MHF4U Jensen

Part 1: Remembering How to Prove Trig Identities

Tips and Tricks

Reciprocal Identities Quotient Identities Pythagorean Identities

Square both sides

𝑐𝑠𝑐2 πœƒ =1

𝑠𝑖𝑛2 πœƒ

𝑠𝑒𝑐2 πœƒ =1

π‘π‘œπ‘ 2 πœƒ

π‘π‘œπ‘‘2 πœƒ =1

π‘‘π‘Žπ‘›2 πœƒ

Square both sides

𝑠𝑖𝑛2 πœƒ

π‘π‘œπ‘ 2 πœƒ= π‘‘π‘Žπ‘›2 πœƒ

cos2 πœƒ

sin2 πœƒ = cot2 πœƒ

Rearrange the identity

𝑠𝑖𝑛2πœƒ = 1 βˆ’ π‘π‘œπ‘ 2πœƒ

π‘π‘œπ‘ 2πœƒ = 1 βˆ’ 𝑠𝑖𝑛2πœƒ

Divide by either sin2 πœƒ or sin2 πœƒ

1 + π‘π‘œπ‘‘2πœƒ = csc2 πœƒ

π‘‘π‘Žπ‘›2πœƒ + 1 = 𝑠𝑒𝑐2πœƒ

General tips for proving identities:

i) Separate into LS and RS. Terms may NOT cross between sides.

ii) Try to change everything to 𝑠𝑖𝑛 πœƒ or π‘π‘œπ‘  πœƒ

iii) If you have two fractions being added or subtracted, find a common denominator and

combine the fractions.

iv) Use difference of squares β†’ 1 βˆ’ 𝑠𝑖𝑛2 πœƒ = (1 βˆ’ 𝑠𝑖𝑛 πœƒ)(1 + 𝑠𝑖𝑛 πœƒ)

v) Use the power rule β†’ 𝑠𝑖𝑛 6 πœƒ = (𝑠𝑖𝑛2 πœƒ)3

Fundamental Trigonometric Identities Reciprocal Identities Quotient Identities Pythagorean Identities

𝒄𝒔𝒄 𝜽 =𝟏

π’”π’Šπ’ 𝜽

𝒔𝒆𝒄 𝜽 =𝟏

𝒄𝒐𝒔 𝜽

𝒄𝒐𝒕 𝜽 =𝟏

𝒕𝒂𝒏 𝜽

π’”π’Šπ’ 𝜽

𝒄𝒐𝒔 𝜽= 𝒕𝒂𝒏 𝜽

𝐜𝐨𝐬 𝜽

𝐬𝐒𝐧 𝜽 = 𝐜𝐨𝐭 𝜽

𝐬𝐒𝐧𝟐 𝜽 + 𝐜𝐨𝐬𝟐 𝜽 = 𝟏

Example 1: Prove each of the following identities a) tan2 π‘₯ + 1 = sec2 π‘₯ b) cos2 π‘₯ = (1 βˆ’ sin π‘₯)(1 + sin π‘₯)

c) sin2 π‘₯

1βˆ’cos π‘₯= 1 + cos π‘₯

Part 2: Transformation Identities Because of their periodic nature, there are many equivalent trigonometric expressions . Horizontal translations of _____ that involve both a sine function and a cosine function can be used to obtain two equivalent functions with the same graph.

Translating the cosine function πœ‹

2 to the ______________________________

results in the graph of the sine function, 𝑓(π‘₯) = sin π‘₯.

Similarly, translating the sine function πœ‹

2 to the ________________________

results in the graph of the cosine function, 𝑓(π‘₯) = cos π‘₯.

Part 3: Even/Odd Function Identities Remember that 𝐜𝐨𝐬 𝒙 is an __________ function. Reflecting its graph across the 𝑦-axis results in two equivalent functions with the same graph. sin π‘₯ and tan π‘₯ are both __________ functions. They have rotational symmetry about the origin.

Transformation Identities

Even/Odd Identities

Part 4: Co-function Identities The co-function identities describe trigonometric relationships between complementary angles in a right triangle.

We could identify other equivalent trigonometric expressions by comparing principle angles drawn in standard position in quadrants II, III, and IV with their related acute (reference) angle in quadrant I.

Principle in Quadrant II Principle in Quadrant III Principle in Quadrant IV

Example 2: Prove both co-function identities using transformation identities

a) cos (πœ‹

2βˆ’ π‘₯) = sin π‘₯ b) sin (

πœ‹

2βˆ’ π‘₯) = cos π‘₯

Co-Function Identities

Part 5: Apply the Identities

Example 3: Given that sinπœ‹

5β‰… 0.5878, use equivalent trigonometric expressions to evaluate the following:

b) cos7πœ‹

10

a) cos3πœ‹

10

1

x

y

L2 – 4.4 Compound Angle Formulas MHF4U Jensen

Compound angle: an angle that is created by adding or subtracting two or more angles. Normal algebra rules do not apply:

cos(π‘₯ + 𝑦) β‰  cos π‘₯ + cos 𝑦 Part 1: Proof of 𝐜𝐨𝐬(𝒙 + π’š) and 𝐬𝐒𝐧(𝒙 + π’š) So what does cos(π‘₯ + 𝑦) =? Using the diagram below, label all angles and sides:

cos(π‘₯ + 𝑦) = sin(π‘₯ + 𝑦) =

Part 2: Proofs of other compound angle formulas Example 1: Prove cos(π‘₯ βˆ’ 𝑦) = cos π‘₯ cos 𝑦 + sin π‘₯ sin 𝑦

Example 2: a) Prove sin(π‘₯ βˆ’ 𝑦) = sin π‘₯ cos 𝑦 βˆ’ cos π‘₯ sin 𝑦

LS

RS

LS = RS

Even/Odd Properties cos(βˆ’π‘₯) = cos π‘₯ sin(βˆ’π‘₯) = βˆ’sin π‘₯

LS

RS

LS = RS

1

1√2

2

1

√3

Part 3: Determine Exact Trig Ratios for Angles other than Special Angles By expressing an angle as a sum or difference of angles in the special triangles, exact values of other angles can be determined. Example 3: Use compound angle formulas to determine exact values for

Compound Angle Formulas

sin(π‘₯ + 𝑦) = sin π‘₯ cos 𝑦 + cos π‘₯ sin 𝑦

sin(π‘₯ βˆ’ 𝑦) = sin π‘₯ cos 𝑦 βˆ’ cos π‘₯ sin 𝑦

cos(π‘₯ + 𝑦) = cos π‘₯ cos 𝑦 βˆ’ sin π‘₯ sin 𝑦

cos(π‘₯ βˆ’ 𝑦) = cos π‘₯ cos 𝑦 + sin π‘₯ sin 𝑦

tan(π‘₯ + 𝑦) =tan π‘₯ + tan 𝑦

1 βˆ’ tan π‘₯ tan 𝑦

tan(π‘₯ βˆ’ 𝑦) =tan π‘₯ βˆ’ tan 𝑦

1 + tan π‘₯ tan 𝑦

a) sinπœ‹

12

sinπœ‹

12=

b) tan (βˆ’5πœ‹

12)

tan (βˆ’5πœ‹

12) =

Part 4: Use Compound Angle Formulas to Simplify Trig Expressions Example 4: Simplify the following expression

cos7πœ‹

12cos

5πœ‹

12+ sin

7πœ‹

12sin

5πœ‹

12

Part 5: Application

Example 5: Evaluate sin(π‘Ž + 𝑏), where π‘Ž and 𝑏 are both angles in the second quadrant; given sin π‘Ž =3

5 and

sin 𝑏 =5

13

Start by drawing both terminal arms in the second quadrant and solving for the third side.

L3 – 4.5 Double Angle Formulas MHF4U Jensen

Part 1: Proofs of Double Angle Formulas Example 1: Prove sin(2π‘₯) = 2 sin π‘₯ cos π‘₯

Example 2: Prove cos(2π‘₯) = cos2 π‘₯ βˆ’ sin2 π‘₯

Note: There are alternate versions of π‘π‘œπ‘  2π‘₯ where either π‘π‘œπ‘ 2 π‘₯ 𝑂𝑅 𝑠𝑖𝑛2 π‘₯ are changed using the Pythagorean Identity.

LS

RS

LS

RS

Part 2: Use Double Angle Formulas to Simplify Expressions Example 1: Simplify each of the following expressions and then evaluate

a) 2 sinπœ‹

8cos

πœ‹

8

b) 2 tan

πœ‹

6

1βˆ’tan2πœ‹

6

Double Angle Formulas

sin(2π‘₯) = 2 sin π‘₯ cos π‘₯

cos(2π‘₯) = cos2 π‘₯ βˆ’ sin2 π‘₯

cos(2π‘₯) = 2 cos2 π‘₯ βˆ’ 1

cos(2π‘₯) = 1 βˆ’ 2 sin2 π‘₯

tan(2π‘₯) =2 tan π‘₯

1 βˆ’ tan2 π‘₯

Part 3: Determine the Value of Trig Ratios for a Double Angle If you know one of the primary trig ratios for any angle, then you can determine the other two. You can then determine the primary trig ratios for this angle doubled.

Example 2: If cos πœƒ = βˆ’2

3 and

πœ‹

2≀ πœƒ ≀ πœ‹, determine the value of cos(2πœƒ) and sin(2πœƒ)

We can solve for cos(2πœƒ) without finding the sine ratio if we use the following version of the double angle formula:

Now to find sin(2πœƒ):

Example 3: If tan πœƒ = βˆ’3

4 and

3πœ‹

2≀ πœƒ ≀ 2πœ‹, determine the value of cos(2πœƒ).

We are given that the terminal arm of the angle lies in quadrant ___:

L4–4.5ProveTrigIdentitiesMHF4UJensenUsingyoursheetofallidentitieslearnedthisunit,proveeachofthefollowing:Example1:Prove !"#(%&)

()*+!(%&)= tan π‘₯

Example2:Provecos 4

%+ π‘₯ = βˆ’sin π‘₯

LS

RS

LS

RS

Example3:Provecsc(2π‘₯) = *!* &% *+! &

Example4:Provecos π‘₯ = (

*+! &βˆ’ sin π‘₯ tan π‘₯

LS

RS

LS

RS

Example5:Provetan(2π‘₯) βˆ’ 2 tan 2π‘₯ sin% π‘₯ = sin 2π‘₯

Example6:Prove*+!(&9:)

*+!(&):)= ();<#& ;<#:

(9;<# & ;<#:

LS

RS

LS

RS

L5–5.4SolveLinearTrigonometricEquationsMHF4UJensenInthepreviouslessonwehavebeenworkingwithidentities.IdentitiesareequationsthataretrueforANYvalueofπ‘₯.Inthislesson,wewillbeworkingwithequationsthatarenotidentities.Wewillhavetosolveforthevalue(s)thatmaketheequationtrue.Rememberthat2solutionsarepossibleforananglebetween0and2πœ‹withagivenratio.UsethereferenceangleandCASTruletodeterminetheangles.Whensolvingatrigonometricequation,considerall3toolsthatcanbeuseful:

1. SpecialTriangles2. GraphsofTrigFunctions3. Calculator

Example1:Findallsolutionsforcos πœƒ = βˆ’ *+intheinterval0 ≀ π‘₯ ≀ 2πœ‹

Example2:Findallsolutionsfortan πœƒ = 5intheinterval0 ≀ π‘₯ ≀ 2πœ‹Example3:Findallsolutionsfor2 sin π‘₯ + 1 = 0intheinterval0 ≀ π‘₯ ≀ 2πœ‹

Example4:Solve3 tan π‘₯ + 1 = 2,where0 ≀ π‘₯ ≀ 2πœ‹

L6–5.4SolveDoubleAngleTrigonometricEquationsMHF4UJensenPart1:Investigation π’š = 𝐬𝐒𝐧𝒙 π’š = 𝐬𝐒𝐧(πŸπ’™)a)Whatistheperiodofbothofthefunctionsabove?Howmanycyclesbetween0and2πœ‹radians?b)Lookingatthegraphof𝑦 = sin π‘₯,howmanysolutionsarethereforsin π‘₯ = 2

3β‰ˆ 0.71?

c)Lookingatthegraphof𝑦 = sin(2π‘₯),howmanysolutionsarethereforsin(2π‘₯) = 2

3β‰ˆ 0.71?

d)Whentheperiodofafunctioniscutinhalf,whatdoesthatdotothenumberofsolutionsbetween0and2πœ‹radians?

Part2:SolveLinearTrigonometricEquationsthatInvolveDoubleAngles

Example1:sin(2πœƒ) = 93where0 ≀ πœƒ ≀ 2πœ‹

Example2:cos(2πœƒ) = βˆ’ 23where0 ≀ πœƒ ≀ 2πœ‹

Example3:tan(2πœƒ) = 1where0 ≀ πœƒ ≀ 2πœ‹

L7–5.4SolveQuadraticTrigonometricEquationsMHF4UJensenAquadratictrigonometricequationmayhavemultiplesolutionsintheinterval0 ≀ π‘₯ ≀ 2πœ‹.Youcanoftenfactoraquadratictrigonometricequationandthensolvetheresultingtwolineartrigonometricequations.Incaseswheretheequationcannotbefactored,usethequadraticformulaandthensolvetheresultinglineartrigonometricequations.YoumayneedtouseaPythagoreanidentity,compoundangleformula,ordoubleangleformulatocreateaquadraticequationthatcontainsonlyasingletrigonometricfunctionwhoseargumentsallmatch.Rememberthatwhensolvingalineartrigonometricequation,considerall3toolsthatcanbeuseful:

1. SpecialTriangles2. GraphsofTrigFunctions3. Calculator

Part1:SolvingQuadraticTrigonometricEquations

Example1:Solveeachofthefollowingequationsfor0 ≀ π‘₯ ≀ 2πœ‹

a) sin π‘₯ + 1 sin π‘₯ βˆ’ ,-= 0

b)sin- π‘₯ βˆ’ sin π‘₯ = 2

c)2sin- π‘₯ βˆ’ 3 sin π‘₯ + 1 = 0

Part2:UseIdentitiestoHelpSolveQuadraticTrigonometricEquationsExample2:Solveeachofthefollowingequationsfor0 ≀ π‘₯ ≀ 2πœ‹a)2sec- π‘₯ βˆ’ 3 + tan π‘₯ = 0

b)3 sin π‘₯ + 3 cos(2π‘₯) = 2

L8–5.4ApplicationsofTrigonometricEquationsMHF4UJensenPart1:ApplicationQuestions

Example1:Today,thehightideinMatthewsCove,NewBrunswick,isatmidnight.Thewaterlevelathightideis7.5m.Thedepth,dmeters,ofthewaterinthecoveattimethoursismodelledbytheequation

𝑑 𝑑 = 3.5 cos *+𝑑 + 4

Jennyisplanningadaytriptothecovetomorrow,butthewaterneedstobeatleast2mdeepforhertomaneuverhersailboatsafely.DeterminethebesttimewhenitwillbesafeforhertosailintoMatthewsCove?

Example2:Acity’sdailytemperature,indegreesCelsius,canbemodelledbythefunction

𝑑 𝑑 = βˆ’28 cos 1*2+3

𝑑 + 10

where𝑑isthedayoftheyearand1=January1.Ondayswherethetemperatureisapproximately32Β°Corabove,theairconditionersatcityhallareturnedon.Duringwhatdaysoftheyeararetheairconditionersrunningatcityhall?

Example3:AFerriswheelwitha20meterdiameterturnsonceeveryminute.Ridersmustclimbup1metertogetontheride.a)Writeacosineequationtomodeltheheightoftherider,β„Žmeters,𝑑secondsaftertheridehasbegun.Assumetheystartattheminheight.b)Whatwillbethefirst2timesthattheriderisataheightof5meters?

Recommended