Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests...

Preview:

Citation preview

309chAPTeR 13. Forests and Water

GraemeLockaby,ChelseaNagy,JamesM.Vose, ChelcyR.Ford,GeSun,SteveMcNulty, PeteCaldwell,ErikaCohen, andJenniferMooreMyers1

key FiNDiNGS

• Forestconversiontoagricultureorurbanuseconsistentlycausesincreaseddischarge,peakflow,andvelocityofstreams.Subregionaldifferencesinhydrologicresponsestourbanizationaresubstantial.

• Sediment,waterchemistryindices,pathogens,andothersubstancesoftenbecomemoreconcentratedafterforestconversion.Iftheconversionistoanurbanuse,theresultingadditionalincreasesindischargeandconcentrationswillproduceevenhigherloads.

•Althoughphysiographiccharacteristicssuchasslopeandsoiltextureplaykeyrolesinhydrologicandsedimentresponsestolanduseconversion,landuse(ratherthanphysiography)istheprimarydriverofwaterchemistryresponses.

•Conversionofforestlandtourbanusesmaydecreasethesupplyofwateravailableforhumanconsumptionandincreasepotentialthreatstohumanhealth.

• Increasesinurbanizationby2060intheAppalachians,Piedmont,andCoastalPlainwillincreaseimperviousnessandfurtherreducehydrologicstabilityandwaterqualityindicesintheheadwatersofseveralmajorriverbasinsandinsmallwatershedsalongtheAtlanticOceanandGulfofMexico.

1GraemeLockabyisaco-leadauthorandAssociateDeanandProfessor,AuburnUniversitySchoolofForestryandWildlifeSciences,Auburn,AL36849.ChelseaNagyisaGraduateResearchAssistant,BrownUniversity,DepartmentofEcologyandEvolutionaryBiology,Providence,RI02912.JamesM.Voseisaco-leadauthorandProjectLeader,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,CenterforIntegratedForestScience,CollegeofNaturalResources,NorthCarolinaStateUniversity,Raleigh,NC27695.ChelcyR.FordisanEcologist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,CoweetaHydrologicLaboratory,Otto,NC28763.GeSunisaResearchHydrologist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,EasternForestEnvironmentalThreatsAssessmentCenter,Raleigh,NC27606.SteveMcNultyisaSupervisoryEcologist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,EasternForestEnvironmentalThreatsAssessmentCenter,Raleigh,NC27606.PeteCaldwellisaResearchHydrologist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,EasternForestEnvironmentalThreatsAssessmentCenter,Raleigh,NC27606.ErikaCohenisaResourceInformationSpecialist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,EasternForestEnvironmentalThreatsAssessmentCenter,Raleigh,NC27606.JenniferMooreMeyersisaResourceInformationSpecialist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,EasternForestEnvironmentalThreatsAssessmentCenter,Raleigh,NC27606.

•Onaverage,watersupplymodelprojectionsindicatethatwaterstressduetothecombinedeffectsofpopulationandlandusechangewillincreaseintheSouthby10percentby2050.

•Waterstresswilllikelyincreasesignificantlyby2050underallfourclimatechangescenarios,largelybecausehighertemperatureswillresultinmorewaterlossbyevapotranspirationandbecauseofdecreasedprecipitationinsomeareas.

•Approximately5,000milesofsoutherncoastlinearehighlyvulnerabletosealevelrise.

iNTRoDucTioN

Comparedtoallotherlanduses,southernforestsprovidethecleanestandmoststablewatersuppliesfordrinkingwater,recreation,powergeneration,aquatichabitat,andgroundwaterrecharge(Brownandothers2008,Jacksonandothers2004,Sunandothers2004).Forestsareuniqueamonglandcoversbecausetheyarelong-livedandrelativelystable.However,theyaresubjecttosubstantialstructuralandfunctionalalterationsbymanagementpracticesand/ornaturaldisturbances,theintensityofwhichdetermineswhetheralterationsareshortorlong-term.WaterresourcesintheSouthareatriskofdegradationfromagrowingpopulation,continuedconversionofforeststootherlanduses,andclimatechange.Urbanandagriculturallandscanimpairwaterresourcesbyintroducingnutrients,sediment,bacteria,andotherpollutantstostreams.Additionally,alteredhydrology—includinghigherpeakflows,andlowerbaseflowsandhydroperiods(Amatyaandothers2006)—iscommonwithforestconversiontootherlanduses.Together,thesechangescanmodifythehabitatandconsequentlythecompositionofaquatic(andriparian)communities.

HistoricallandusepracticeshavedramaticallychangedthelandscapeoftheSouth.Soilerosionandsedimentationwereprevalentthroughouttheregionduringtheperiodofagriculturalexpansioninthe18thand19thcenturies.Evidencecanstillbeseentodayinthesedimentdepositsoffloodplains.ThismassivetopsoilerosionanddepletedsoilproductivitywasfollowedbyaperiodofagriculturalabandonmentandreforestationthroughoutmuchoftheSouth.Todaymajorlandusesincludeforestry,agriculture,

Chapter 13. Forests and Water

313chAPTeR 13. Forests and Water

HadCM3B2.Itshouldbenotedthatclimatemodelsareoftencalibratedtobestaddressclimatewithinaspecificgeographicregion(e.g.,MIROC32A1BwasspecificallydevelopedforJapan).Theapplicationofanygeneralcirculationmodel(GCM)willnotbeuniversallyreliable(i.e.,accuratelyabletopredictfutureclimate).InthisstudytheMIROC32A1BpredictsclimaticconditionsfortheSouthernUnitedStatesthatareextremeformostpartsoftheglobe.Othermodelscouldbeconsideredmoremoderateintheirpredictionsoffutureclimate.TheresultsofallformodelpredictionsarepresentedinthischapterbutfurtherdiscussionoftheGCMcanbefoundinchapter3.

Population and land use change data—TheU.S.CensusBureau(2001)recordsindicatethatpopulationincreasedabout30percentfrom1980to2000.Populationprojectionsatthecensusblocklevelwereaggregatedtothe8-digitHUCwatershedscaleforeachyearfrom1967to2050(NPADataServicesInc.1999).FortheWaSSImodelsimulation,weselectedthelandusedata(chapter4)belongingtoCornerstoneA(IntergovernmentalPanelonClimateChangestorylineA1B,levelcropprices,hightimberprices).Formodelsimulations,thelanduseclassesdescribedinchapter4weregroupedintoeightcategoriesas:crop,deciduousforest,evergreenforest,mixedforest,grassland,shrubland,savanna,andwater/urban/barren.Inaddition,thelandusedatawererescaledfromthecountytothe8-digitHUCwatershedformodelinput.Therepresentativeyearwas2000forhistoricbaselinemodelsimulations,and2050wasselectedforfuturemodelsimulations.

Sea level Rise

WeusedtheanalysisofTitusandRichman(2001)toidentifylandarea1.5m,1.5to3.5m,and>3.5mabovesealevelandgenerated66maps(basedon1-degreedigitalelevationmodels)tooutlinecoastalareasontheGulfofMexicoandthesouthernAtlanticStatesfromVirginiatoFlorida.Thevulnerabilityofcoastalregions(coastalvulnerabilityindex,orCVI)wascalculatedusingtheanalysesofHammar-KloseandThieler(2001),whoincorporatedgeomorphology,coastalslope,rateofrelativesea-levelrise(mmyr-1),shorelineerosionandaccretionrates(myr-1),meantidalrange(m),andmeanwaveheight(m)intocalculationsofCVIfortheAtlantic,Pacific,andGulfofMexicocoasts.Arankingwasappliedtoeachvariablefor~5kmsegments(or3minutes)ofcoastlineandthencombinedtoformanindexofriskusingthefollowingequation:

CVI=

Whereaisgeomorphology,biscoastalslope,cisrelativesea-levelrise,disshorelineerosion/accretionrate,eismeantiderange,andfismeanwaveheight,andthefinalCVIwas

brokenintotofourriskcategories:low(<8.7),moderate(8.7to15.6),high(15.6to20.0),andveryhigh(>20.0).

DatasourcesusedtocalculateCVIincludedstategeologicmapsand1:250,000-scaletopographicmapstodeterminegeomorphology;acombinationofU.S.NavyETOPO5andNationalGeophysicalDataCenterdigitaltopographicandbathymetricelevationdatabasestodeterminecoastalslope;NationalOceanServicedatatodeterminerelativesea-levelriseandmeantidalrange;acombinationoftheMayandothers(1982)CoastalErosionInformationSystemdatasetandmorerecentStateandlocalregionalstudiestoestimateshorelineerosionandaccretionrates;andtheU.S.ArmyCorpsofEngineersWaveInformationStudytoestimatemeanwaveheight(Hammar-KloseandThieler2001).Afteralldatawerecompiledandrescaledtoa5kmgrid,eachvariablewasrankedfrom1(verylowvulnerabilitytosealevelrise)to5(veryhighvulnerabilitytosealevelrise).

ReSulTS

Physical environment of the Southern Region

Thesouthernclimateispredominantlyhumidsubtropical;however,thewesternmostareas,suchasTexasandOklahoma,aresemi-arid.Theaverageannualtemperaturerangeis15to21°Candtheprecipitationrangeis1010to1520mmyr-1(Bailey1980).Ultisols,thepredominantsoilorderoftheSouth,arestronglyleachedandnutrientpoorwithasubsurfaceaccumulationofclay(Bailey1980,USDANaturalResourceConservationService2009).ThereliefismostlylevelalongmuchoftheAtlanticandGulfofMexico,however,theupperCoastalPlainofAlabamaandMississippiismoderatelytogentlyrolling(MartinandBoyce1993).CoastalPlainsoilsaresandy.ThePiedmonthasgentlyrollingtosteepterrainwithclayeysurfaceandsubsurfacesoils.Consequently,thepotentialforerosionishighthroughoutthePiedmontandevenhighertowardtheBlueRidgesubregionoftheSouthernAppalachians(Trimble2008).TheSouthernAppalachianshavesteeptopographyandelevationrangesfrom225to900m.ThethreemajorriverbasinsoftheSoutharetheMobile,Tennessee,andCumberland(WorldWildlifeFund2010).Southernstreamssupportadiversityoffreshwaterspeciesandarethusahighconservationpriority(WorldWildlifeFund2010).Physiographicsubregions,andthelandscapecomponentsofwatershedswithinthem,areconnectedthroughtheflowofenergyandmaterials,themovementofspecies,andthemovementofinsects,disease,andotherdisturbanceagents.Unlikemanyoftheexchanges,themovementofwateracrossmostoftheSouthisfairlypredictablebecausewaterfollowshydrologicflowpathsthatareprimarilydrivenbyelevationgradients.ExceptionsoccurinthelowerCoastalPlainandother

√ a*b*c*d*e*f6( )

314The Southern Forest Futures Project

systemswherehydrologyisdominatedbygroundwaterhydrology.Understandinghowchanginglandscapeswillalterthequantity,quality,andvalueofsurfacewaterandgroundwaterrequiresanalysesatexpandingspatialscalestoexaminehowrapidurbanizationaffectsforestpracticessuchascutting,roadbuilding,anddrainage.

Functions of Forested Wetlands and Riparian Forests

Forestedwetlandscanbedescribedbyhydrogeomorphicconsiderationssuchaslandscapeposition,watersource,andhydrodynamicsaredominantprocessregulators(Ainslie2002).Thethreemostcommonclassesofsouthernforestedwetlandsareriverine,depressional,andflatwithmineralororganicsoil(table13.3).Ingeneral,forestsandhydrologicalcyclesareconnectedthroughtheprocessesofevapotranspiration(Amatyaandothers2008).Hydrologicalfunctionsofsouthernforestedwetlandsmayincludefloodmitigationorshort-termsurfacewaterstorage;andtoalesserextentthanforestedwetlandsinotherregionsoftheUnitedStates,theyabatestormsandrechargegroundwater(NationalResearchCouncil1995,Walbridge1993).Biogeochemicalfunctionsofwetlands,includingcyclingofelementsandretentionandremovalofdissolvedsubstances,servetoimprovesurface,subsurface,andgroundwaterquality(Blevins2004,NationalResearchCouncil1995).Regardlessoftype,allforestedwetlandscontributetofoodwebmaintenancebyprovidinghabitatforplantsandanimals(Faulkner2004,Walbridge1993).Someforestedwetlandsmayprovideuniquefunctionsbasedontheirdistinctivecharacteristicsandstructure.Forexample,CarolinaBaysmaycontainrareandendangeredplantsandalsoprovidedesirablebreedingsitesandhabitatforbirdsandwildlife

(Ainslie2002).Andmineralsoilflatscanhaveveryhighherbaceousspeciesrichnessinpartbecauseoftheiruniquefireregime(Ainslie2002).

Riparianforestsalsoprovidehydrological,biogeochemical,andhabitatfunctions.Manystudieshaveshownthatriparianforestshelptostabilizestreambanksandtrappollutantssuchassediment,nutrients,bacteria,fertilizers,andpesticidesfromrunoff(AndersonandMasters1992,BinkleyandBrown1993,delaCrétazandBarten2007,KlapprothandJohnson2000,Naimanandothers2005,USDANationalAgroforestryCenter2008,Vellidis1999).Inparticular,Naimanandothers2005foundthat“Thehydraulicconnectivityofriparianzoneswithstreamsanduplands,coupledwithenhancedinternalbiogeochemicalprocessingandplantuptake,makeriparianzoneseffectivebuffersagainsthighlevelsofdissolvednutrientsfromuplandsandstreams,whilegeomorphologyandplantstructuremakethemeffectiveattrappingsediments.”However,anintactripariancorridordoesnotensurestreamprotectionasthisrelationshipisdependentonotherfactorsincludingresidencetimeofpollutantsinthebuffer,depthandvariationofwatertable,uplandlandusepractices,climate,andwatershedcharacteristicssuchastopography,hydrology,soils,andvegetation(delaCrétazandBarten2007,Groffmanandothers2003,Tomerandothers2005,Walshandothers2005).

Habitatfunctionsprovidedbyriparianforestsincludelowerwatertemperaturesforaquaticanimalsduetoshadingfromtrees,alongwithshelterforbirdsandwildlife(AndersonandMasters1992,BinkleyandBrown1993,Naimanandothers2005,Vellidis1999).Ripariaaresourcesoflargewoodydebris,whichcreateshabitatheterogeneity,actsasasubstrateforcolonization,andprovidesnutrientstotheaquatic(and

Table 13.3—Southern wetland types and characteristics

Wetland type characteristics Sources

Riverine (bottomland hardwood wetlands)

Occurring in floodplains or riparian corridorsAinslie 2002, Brinson 1993, Palmer 1994, Childers and Gosselink 1990, National Research Council 1995, Naiman and others 2005, Walbridge 1993, Meyer 1992, Dennis 1988

Many connections between wetland and stream channel (overbank flow and subsurface connections)Including cypress stands, sloughs, and hardwood swamps associated with brown-, black-, and red-water streams in Atlantic and Gulf Coastal Plains

Depressional

Named for their depressional topography which promotes surface water accumulation

Ainslie 2002, Brinson 1993, Duryea and Hermansen 1997, Dennis 1988Cypress trees predominant

Including cypress domes (Gulf Coastal Plain) and Carolina bays (Atlantic Coastal Plain)

Wet flats

Can have either organic soils (pocosins) on plateaus or mineral soils in the Atlantic Coastal Plain between rivers or floodplain terraces Ainslie 2002, Brinson 1993,

Gresham 1989Pocosins characterized by dense evergreen shrub vegetation Mineral flats characterized by a closed canopy of hardwoods or an open savannah with some pines

315chAPTeR 13. Forests and Water

riparian)community(Naimanandothers2005).Inputsoforganicmatterfromriparianforestssupplyanallochthonousenergysourcetostreamecosystems,therebylinkingtheriparianandaquaticfoodwebs.Additionally,ifBestManagementPracticesareimplementedappropriately,riparianforestscanalsoprovidewoodproducts,pastureforlivestock,andrecreationalopportunities(AndersonandMasters1992).

hydrologic effects of Forest conversion to other land uses

Harvestingforestsreducesevapotranspirationandinfiltration;creatingimpervioussurfacesincreasesoverlandflow(PaulandMeyer2001).Similarly,forestconversiontoagriculturallandmaycompactsoils,reduceevapotranspirationandinfiltration,andincreaseoverlandflow.Regardlessofpost-harvestinguse,characteristicchangesinhydrologyfollowingforestremovalincludegreaterstreamflowandpeakflows(BoschandHewlett1982,Crim2007,delaCrétazandBarten2007,Hibbert1967,McMahonandothers2003,Schoonoverandothers2006).Representativehydrographsfortypicalforested,agricultural,andurbanwatershedsareshowninfigures13.2to13.4.Astudyofthe13SouthernStatesshowedthatstreamflowincreasedby69to210mmyr-1followingforestharvesting(Grace2005).Stednick(1996)foundthata20percentchangeinforestcoverproducesaquantifiablechangeinwateryieldintheAppalachians,butthatthethresholdisabout25percenthigherforthePiedmontandCoastalPlain.Sincethe1970sinHouston,impervioussurfaceswereresponsiblefor32percentofthe159percentincreaseinpeakflows,and77percentofthe146percentincreaseinannualrunoff(OliveraandDeFee2007).Similarlysincethe1960sintheWhiteRockCreekwatershedofnortheasternTexas,peakflowsincreasedby20to118percentwithvaryingprecipitationintensitiesinresponsetodramaticincreasesinimperviouscover(Vicars-GroeningandWilliams2007).Streamhydrographsofurbanwatershedsreflectaflashyhydrologywithgreaterpulsesandfasterattainmentofpeakflowsduringstormevents(Beighleyandothers2003,BoggsandSun2011,Calhounandothers2003,Crim2007,Schoonoverandothers2006).However,asaridregionsnaturallyhaveflashyhydrologyduetoinherentprecipitationregimes,urbaneffectsmaybeobscuredonthehydrographsofstreamsinthosepartsoftheSouth(Grimmandothers2004).Flow-durationcurvesalsodepictchangesinhydrologybydisplayingthepercentageoftimestreamflowequalsorexceedsaparticularvalue.Thepre-urbanizationflowdurationcurveexhibitsmoregradualvariationswhilethepost-urbanizationcurveismuchsteeper(fig.13.5).

Inurbanandagriculturalwatersheds,decreasedinfiltrationproduceslessgroundwaterrecharge,possiblyreducingbaseflows(Calhounandothers2003,RoseandPeters2001,Wangandothers2001).Asanexample,intributariesof

Figure13.2—Representativehydrographofaforestedwatershed(Crim2007).Dischargeunitsareliterspersecondperha.

Figure13.3—Representativehydrographofapastoralwatershed(Crim2007).Dischargeunitsareliterspersecondperha.

Figure13.4—Representativehydrographofanurbanwatershed(Crim2007).Dischargeunitsareliterspersecondperha.

316The Southern Forest Futures Project

theupperChattahoocheeRiver,Calhounandothers(2003)estimatedthatevery1percentincreaseinimpervioussurfacereducesbaseflowby2percent.However,thisisnotalwaysthecaseasillustratedbythelackofbaseflowresponsetoincreasesinimpervioussurfaceintheFloridaPanhandle(Nagyandothers2012);andbyhighermedianbaseflowinpastoralwatershedscomparedtoforestedwatershedsintheGeorgiaPiedmont(Schoonoverandothers2006).ThelessresponsivebaseflowintheCoastalPlainmaybeexplainedbydifferencesbetweentheextentofsurfacewaterandbaseflowrechargezonesinveryflatterrainswherebaseflowzonesmayextendbeyondsurfacecatchmentboundaries.Inthecaseofthepastoralvs.forestedwatershedsinthePiedmont,apparentlyreducedETandadequatesurfaceinfiltrationratesinthepasturesaccountedforthehigherbaseflowsthere.

AlthoughhistoricallytheSouthhasnotexperiencedagreatdeficiencyofwatersupplycomparedtootherregionsintheUnitedStates,withcontinuedforestlossandexpandingurbanization,watersupplymaybecomeamorepressingissueinthisregion.Whenmodelinglanduseeffectsonly,Sunandothers(2008)predictedreducedwaterdeficitsduetoincreasedwateryieldfollowingconversionofforesttourbanlanduses.However,theyfoundthatwaterresourceswouldlikelybeundergreaterpressureinthefuturewhentheeffectsofclimatechangeandpopulationgrowthare

alsotakenintoaccount.Additionally,itshouldbenotedthatdespiteincreasedstreamflowfollowingforestremoval,availablesurfacewatermightdeclineduetounstableflowregimes.AfterincreasingwithdrawalratesfromAlabamastreamsnearBirmingham,surfacewateravailableforhumanuserangedfromabout20to45percentofdischargeforurbanwatershedsand20to60percentforforestedwatersheds;andathigherwithdrawalrateswateravailabilitywassignificantlyhigherinforestedthanurbanwatersheds.2Therefore,althoughtotalwateryieldisoftenreducedinforestedwatershedscomparedtourbanwatersheds,forestedwatershedsmayhaveagreaterpercentageofwateravailableforuse,suggestingthatincreasingurbanizationcontributestogreaterstress.Lastly,degradationofwaterqualityfrompoint-andnon-pointsourcepollutioncanalsoreducetheamountofavailablewater(Sunandothers2008).

effects of Forest conversion on Sediment

Forestsstabilizesoils(Jacksonandothers2004);thereforesoilismorereadilyerodedfollowingremovalofvegetation,andistransportedassedimentintofloodplainsandotherareasoflowertopography(Jacksonandothers2005a,Trimble2008)and/ordirectlyintostreamchannels.Theeffectsofhistoricalagriculturaluse,inparticularrow-cropagriculture,onsoilerosionandsubsequentsedimentdepositionthroughouttheSouthwereprofound(Casarim2009,Jacksonandothers2005a,Trimble2008).Forexample,intheGeorgiaPiedmont,sedimentdepositionfromhistoricalagriculturewasasmuchas1.6mintheMurderCreekfloodplain(Jacksonandothers2005a)andaveraged1.8minBonhamCreekandSallyBranchwatersheds(Casarim2009).Itcanbedifficulttodifferentiatesedimentcontributionsfromcurrentlanduseversushistoricalagriculturalusewithinawatershedbecausethelegacyeffectsofhistoricallandusecanbeobserveddecadeslater.Jacksonandothers(2005a)estimatedthat25to30percentofthesedimentloadofMurderCreekconsistedofre-suspendedlegacysediment.ThismeansthatlanduseconversionsinthePiedmonthavethepotentialtore-suspendlegacysedimentthataccumulatedinthestreambedsdecadesagoinadditiontogeneratingsedimentexportfromterrestrialsources.

Thecombinedeffectsofalteredhydrology,removalofvegetation,andanincreaseinimpervioussurfaceoftencauseurbanwatershedstoexhibitstreamsedimentconcentrationsmuchhigherthanforestedwatersheds(ClintonandVose2006,LenatandCrawford1994,Schoonoverandothers2005).IntheSouthernAppalachians,totalsuspendedsolidsconcentrationswere4to5timesgreaterinanurban

2L.Kalin,unpublisheddata;AuburnUniversity,SchoolofForestryandWildlifeSciences,602DuncanDr.,Auburn,Alabama,36849;kalinla@auburn.edu.

Figure13.5—Streamflow-durationcurvesincubicfeetpersecondbeforeandafterurbanization.(Source:L.Kalin,unpublisheddata;AuburnUniversity,SchoolofForestryandWildlifeSciences,Auburn,AL,36849;latif@auburn.edu)

317chAPTeR 13. Forests and Water

comparedtoareferencestream(ClintonandVose2006).IntheGeorgiaPiedmont,totaldissolvedsolidsconcentrationsweretwiceashighinurbanstreamscomparedtoforestedstreams(Crim2007,Schoonoverandothers2005),buttotalsuspendedsolidsdidnotincreasesignificantlyunderurbancover.IntheCoastalPlain,Wahlandothers(1997)foundatwofoldincreaseintotalsuspendedsolidsinurbancomparedtoforestedstreams(upto200mg/Lduringstormflowintheurbanstream).Erosionassociatedwithurbanlandusescanbeparticularlyhighatconstructionsitesandareasofnewdevelopment(Novotny2003,PaulandMeyer2001).Forexample100-to10,000-foldincreasesovernondevelopedconditionswerereportedbyPaulandMeyer(2001),especiallyinareaswithgreatertopographicvariationsuchastheSouthernAppalachians.

effects of Forest conversion on Water chemistry

Undisturbedforestedwatershedsaregenerallyassociatedwithlowstream-waterconcentrationsofmostions.Sincemostforestsaredeficientinoneormoreelements,forestedsystemsaregenerallyeffectiveinretaininginputsofnutrients.Consequently,netexportofmacronutrients,ornutrientsrequiredinlargequantitiessuchasN,P,andK,fromundisturbedforestedcatchmentsisoftennegative,indicatinganaccretionofforestbiomass(LikensandBormann1995,SwankandDouglass1977).Asanexample,the3600haTableRockReservoirwatershedintheSouthernAppalachiansofSouthCarolinahasbeenhighlyrestrictedintermsofanyhumanactivitysince1930,andwaterqualitythereremainsunchangedsincethattime.3

Increasednutrientconcentrationsandloadshavebeenobservedinurbanandagriculturalstreamscomparedtoforestedstreams.Excessnutrientsmayarisefromfertilizers,wastewatereffluent,andindustrialwasteinurbanareas;andfromanimalwasteandfertilizersinagriculturalareas.ConcentrationsofNO3

-,Cl-,Na+,K+,Ca2+,andMg2+wereallhigherinanurbanstreamthanareferencestreamintheSouthernAppalachiansduringbaseflowandstormflowboth(ClintonandVose2006).Nitrateshadthemostpronouncedincreasewithmeanconcentrationsofabout0.01mg/Linthereferencestreamand0.7mg/Lintheurbanstream(ClintonandVose2006).However,ammoniumconcentrationswerehigherintheforestedstreamduringstormflow.BolstadandSwank(1997),workinginthesamephysiographicsubregion,foundnoincreasesinnitrate,ammonium,orphosphateconcentrationsduringbaseflowasurbanizationindicesincreased.However,duringstormflow,slightincreaseswerenotedfornitrate(from0.05to0.07mg/Lwithasignificantregressionrelationship)andammonium.

3Okun,D.A.1992.PropertiesoftheTableRockandPoinsettReservoirs:theirfuture.Unpublishedreport.24p.Onfilewith:theGreenvilleWatershedsStudyCommittee,P.O.Box728,Greenville,SC29602.

IntheGeorgiaPiedmont,SchoonoverandLockaby(2006)foundresultssimilartothoseofClintonandVose(2006)fordissolvedorganiccarbon,NO3

-,Cl-,andK+,aswellasSO4

2-whencomparingstreamswith<5percentand>24percentimpervioussurface.Theconcentrationsinstreamsofwatershedswith>24percentimpervioussurfaceweregenerallytwo-to-fourtimeshigherthanthoseoflessdevelopedcatchments.Forinstance,medianbaseflownitrateconcentrationswere0.61mg/Lforstreamswith<5percentimpervioussurfaceand1.64mg/Lforstreamswith>24percentimpervioussurface;stormwaterconcentrationswere0.36and1.93mg/Lrespectivelyforthesamecomparison(SchoonoverandLockaby2006).Althoughammoniumconcentrationshavebeenreportedtobehigherinforestedthaninurbanstreams(ClintonandVose2006,Tuffordandothers2003),twoPiedmontstudiesproduceddifferentresults(Crim2007,SchoonoverandLockaby2006).Similarly,dissolvedorganiccarbonconcentrationsareoftenhigherinforestedwatershedsthaninurbanstreams(Wahlandothers1997)althoughthereareexceptions(SchoonoverandLockaby2006).

Unlikemoststudiesofland-use/land-coverimpactsonwaterquality,whichhavesubstitutedspacefortime,Westonandothers(2009)evaluatedwaterqualitychangeswithintheAltamahaRiverBasinoftheGeorgiaPiedmontformorethan30years.Theincreasesinpopulationduringthatperiodexceeded100percentinsomeofthebasin’swatersheds.Duringthatperiod,agriculturallandusedeclinedaspopulationsrose,producingdecreasesinstreamammoniumandorganiccarbonconcentrationsbutincreasesintotalnitrogenandnitrogenoxideconcentrationsandloads.Phosphorusconcentrationsdidnotincreasewithurbanization,whichtheauthorssuggestmayreflecttheeliminationofphosphatesindetergentsafter1972.TheyalsosuggestthatforthePiedmont,elevatedtotalnitrogenandnitrogenoxidesmayserveaswaterqualitysignaturesofurbanizationandelevatedammonium,andthatorganiccarbonmaybeassociatedwithagriculture.Ammoniumandorganiccarbonarealsooftenlinkedwithforestcoverbuttheeffectsofchangesinforestcoverwerebeyondthescopeofthischapter.

Therearefewerstudiesofland-use/land-coverassociatedwiththeCoastalPlainthanwiththePiedmont.Wahlandothers(1997)comparedwaterqualitywithintwocoastalwatersheds:onewithincreasingurbanization(18percentimpervioussurface)andtheotherwithpredominatelyforestcover(noimpervioussurface).Nitratewasconsistentlyhigherintheurbanstream:130ug/Linwinter(90ug/Linsummer)versus42ug/Linwinter(29ug/Linsummer).Ammoniumwashigherintheforestedstreamregardlessofseason(159ug/Lversus70ug/L)asweredissolvedorganiccarbonconcentrations(27ug/Lversus13ug/L).InastudywithintheFloridaPanhandle(Nagyandothers2012),

318The Southern Forest Futures Project

medianconcentrationsofnitrate,ammonium,calcium,potassium,andsulfatewerehigherinwatershedswithmoreurbanization(impervioussurfaceupto16percent)thanintheirforestedcounterparts.However,nitrateconcentrationsintheCoastalPlainwerewellbelowthosegenerallyobservedinsomestudiesofurbanwatershedsofthePiedmont(0.35mg/Lversus1.78mg/L).Medianconcentrationsoftotalphosphoruswerehighandincreasedfrom0.31mg/Linwatershedswith<5percentimpervioussurfaceto0.43mg/Linwatershedswith>10percentimpervioussurface.Similarly,totalsuspendedsolidsincreasedfrom1.50to2.40mg/Lforimpervious-surfacelevelsabove10percent.Incontrast,dissolvedorganiccarbondeclinedfrom36mg/Linwatershedswithlowimpervioussurfaceto30mg/Linwatershedswith>10percentimpervioussurface.Tuffordandothers(2003)foundthattotalphosphoruswassignificantlyhigherinurbanstreamsthanforestedstreamsintheCoastalPlain(concentrationsofroughly0.06mg/Lversus0.03mg/L).

Ingeneral,increasesinstreamconcentrationsofseveralelementswithinurbanizedwatershedsareverycommonalthoughthemagnitudeofincreaseandsometimestheparticularionsinvolvedvaryconsiderablywithinandamongphysiographicsubregions.Whilenitrateandpotassiumionscommonlyincrease(probablyduetotheirmobilityinwater),responsesoftotalpotassiumorphosphatearemuchmorevariableandmaynotoccuratall.Responsesoftheothermajorelementsfallinbetweenthoseofnitrateandphosphate.Sincedischargeusuallyincreaseswithurbanization,loadsincreaseaswellregardlessofphysiographicsubregion.Consequently,theredonotseemtobecleardistinctionsamongsubregionsintermsofstreamchemistryresponses,whichmayindicatethattheinfluenceoflanduseoverridesthatofphysiographyintheSouth.

Higherloadsofbasecations(K+,Ca2+,andMg2+),Cl-,andtotalnitrogenwerefoundinagriculturalstreamsthaninforestedstreamsintheCoastalPlain(Lowranceandothers1985).IncreasednitrateconcentrationsandloadsinagriculturalstreamscomparedtoforestedstreamsarecommonintheAppalachians(Hagenandothers2006),Piedmont(Crim2007),andCoastalPlain(Lehrter2006,Lowranceandothers1985).Forexample,nitrateloadswere1.5to4.4timeshigherinwatershedswithgreateragriculturallandthanwatershedswithlessagriculturalland(Lowranceandothers1985)andnitrateconcentrationswere2.1to4.4timeshigherinagriculturalversusforestedwatersheds(Hagenandothers2006).

effects of Forest conversion on human health

Urbanandagriculturallandusescontributetoincreasedbacterialconcentrationsinstreamwaters.Connectedstormwaterandseweroverflowsystemsorfailuresin

sewersystems(suchasbrokenpipes,mechanicalfailures,andblockagesfromtreeroots)candirectlyorindirectlyreleaserawsewageintosurfacewaters.Additionally,petandwildlifefecescanbetransportedinrunoffoverlawnsandimpervioussurfacesinurbanareas.FecalcoliformbacteriacountswerehigherinurbanthanforestedorreferencestreamsintheCoastalPlain(DiDonatoandothers2009,Hollandandothers2004,Mallinandothers2000),Piedmont(Crim2007,Schoonoverandothers2005),andSouthernAppalachians(ClintonandVose2006).Forexample,Mallinandothers(2000)reportthatfecalcoliformishighlycorrelatedwithimpervioussurface(r=0.975,p=0.005),percentdevelopment(r=0.945,p=0.015),andpopulation(r=0.922,p=0.026).Similarly,concentrationsofE.colicanbemuchgreaterinurbanwatershedsthanforestedwatersheds(Crim2007,Mallinandothers2000).UrbanwatershedsintheGeorgiaPiedmonthadthehighestmedianE.coliconcentrations(asmeasuredinMPNormostprobablenumber),rangingfrom135to1255MPN/100mL,comparedtomedianrangesof94to169MPN/100mLforpinecoveredwatershedsand59to170MPN/100mLforoak-pinecoveredwatersheds(Crim2007).Becker(2006)reportedthatresidentialareas(2.2percentofthewatershed)didnotappeartobeasourceofbacteriatoTravertineCreeksubbasininOklahoma,butattributedincreasedbacterialconcentrationsinthenearbyRockCreekbasintolivestockgrazingandsewageeffluentinperiodsofhighprecipitation.Andrewsandothers(2009)reportedfecalcoliformcountsashighas10,000colonies/100mLwiththehighestcountsinstormflowfortheportions(42.17percent)oftheIllinoisRiverbasininOklahomaandArkansasthatareinagriculturaluse(pasturesforcattleandconfinedfeedingoperationsforpoultryandswine);theyalsoobservedrapidurbandevelopmentontheupperportionofthisbasinthatmayfurtherimpairwaterresources.

Inadditiontothedangerofelevatedconcentrationsofbacteriainsurfacewaters,otherhealthrisksfromurbanandagriculturallandusesincludemetals,pesticides,andpersonalcareproducts(KlapprothandJohnson2000,PaulandMeyer2001).Tracemetalsedimentconcentrationscanbe2to10timeshigherinstreamsnearurbanandindustrialareasthaninforestedwatershedsorsuburbanwatersheds(Hollandandothers2004);theytendtoaccumulate,ratherthandegrade,overtimeinsedimentsandplantandanimaltissue(KlapprothandJohnson2000).Metalconcentrationsmaybeinverselyrelatedtosedimentparticlesize(PaulandMeyer2001)andthuswemightexpecthighconcentrationsofmetalstobemoreproblematicintheSouthernAppalachiansorPiedmontwithmoresiltyandclayeysoilsthanintheCoastalPlain.Pesticidesenterstreamsthroughrunofffromagriculturalandurbanareas(KlapprothandJohnson2000,PaulandMeyer2001)againunderscoringtheimportanceofriparianbuffersandotherforestedareasinslowingrunoffandenhancinginfiltrationbeforecontaminantscanreach

319chAPTeR 13. Forests and Water

thestream.Personalcareproductsincludingdeodorants,perfumes,andpharmaceuticalsmaynotberemovedbytraditionalwatertreatmentmethodsandarenotaswidelyregulatedasothersubstances(Kolpinandothers2002).

effects of Forest conversion on Aquatic communities

Alteredhydrologyandchannel-morphologyandhigherstreamtemperaturescausedbyforestconversioncandramaticallyaffectaquaticcommunities.Withincreasingurbanand/oragriculturaluses,speciesrichnessandabundanceoftendeclineasreportedforalgae(Sponsellerandothers2001),macroinvertebrates(Helms2008,LenatandCrawford1994,MaloneyandFeminella2006,PaulandMeyer2001,Royandothers2003),fish(Onoratoandothers1998,Walshandothers2005),andamphibians(HoulahanandFindlay2003,OrserandShure1972,Priceandothers2006,Wangandothers2001).Theseeffectsmaybeoffsetsomewhatforalgaebyadditionalstreamnutrients(Biggs1996,Chessmanandothers1999)andformacroinvertebratesbyperennialflows(Chadwickandothers2006).Musselshavevirtuallydisappearedfromsomesouthernstreamsasaresultofincreasedconversionoflandtourbanuses(GangloffandFeminella2007,Gilliesandothers2003).ThesedetrimentaleffectsonaquaticorganismsareparticularlyevidentintheSouthernAppalachians(Scottandothers2002,Waltersandothers2003)wherebothdiversityandendemismareveryhigh(Wallaceandothers1992).Cuffneyandothers(2010)foundahighcorrelationofmacroinvertebrateassemblageswithurbanmetricsineasternmetropolitanareas(includingRaleigh,NC;Atlanta;andBirmingham,AL),butnotincentralmetropolitanareassuchasDallas-FortWorth.Additionally,speciescompositionmayshiftassensitivespeciesarereplacedbymoretolerantspeciesorspeciesbettersuitedforthenewconditions(LenatandCrawford1994,Onoratoandothers1998,Priceandothers2006,Royandothers2005,Sutherlandandothers2002,Waltersandothers2003,WeaverandGarman1994).Forexample,inurbanstreamsofthewesternGeorgiaPiedmont,reptilespeciesrichnessincreasedatthesametimethattherichnessofsalamandersandotheramphibianspeciesdecreased(BarrettandGuyer2008).

Fishcommunitiesmayalsobestronglyaffectedbychangesinhydrologyandwaterqualitythatarederivedfromlandusechanges.Highervelocitiesanddischargeaswellasincreasedsedimentloadsmaydegradestreamhabitattoasignificantdegree(Nagyandothers2011).Inparticular,higherdepositionofsedimentinstreamchannelsmayreducediversityofhabitatwithnegativeimplicationsforsomefishspecies.Reducedabundanceofbenthicfeedersandlowerspawningsuccessingeneralmayaccompanysuchchanges(Nagyandothers2011).Inaddition,nearColumbus,GA,Helmsandothers(2005)notedindicatorsofreducedfish

healthsuchasoccurrenceoflesionsandtumorsinfishfromurbanstreamsandanegativecorrelationbetweenbioticintegrityoffishandtheproportionofimpervioussurfacewithinwatersheds.

implications of land use change Projections on Water Quality

Thedecreasesinforestcoverandincreasesinurbanizationthatareprojectedby2060carryimportantimplicationsforwaterresourcesintheregion.LossesofforestcoveracrossmuchofthePiedmontofNorthCarolina,SouthCarolina,Georgia,and,toalesserextent,Alabama(chapter5)implythatfurtherdegradationofwaterqualityanddestabilizationofsurfacewaterhydrologyarelikelyinlocalizedcatchmentswithinthatsubregion.Inaddition,itislikelythatthealterationsinthehydrologiccycleswithintheheadwatersofmajorriverbasins(fig.13.6)willaffectconditionsdownstream.Riverbasinsandwatershedswillundergoreductionsinevapotranspirationduetolowerleafareaindicesaswellasincreasesinimpervioussurfaces.Consequently,responsestodeforestation—reducedinfiltration,increasedrunoff,reducedbaseflow,andincreaseddischargeandvelocity—thatalreadyexistonthePiedmonttosomeextent(butaremoreoftenassociatedwithsteeperterrains)willlikelybeexacerbated.

Thesehydrologicresponses,combinedwiththeincreasedquantitiesofpotentialpollutantsinurbanizingwatersheds,willincreasestreamwaterconcentrationsand/orloadsofsediment,nutrients,pathogens,andvariouschemicals.Theresultcouldbesignificantdegradationofwaterqualitywithinriverbasinsandstreamsystems,andconcurrentnegativeeffectsondiversityofaquaticorganisms.Althoughresponseswillbemanifestedthroughoutriverbasins,cumulativeeffectswillmagnifythetrendsalongtheirlowerreaches.Ifstreamsremainconnectedtothefloodplainforeststhatliebelowthephysiographicfallline,somefractionofpollutantloadsmaybefilteredassedimentisdepositedbyspreadingfloodwaters.However,althoughuppercoastalforestsareprojectedtobeclearedtoalesserextentthanPiedmontforests,theyremainatsomeriskofconversionwithsubsequentreductionofpollutantfiltrationpotentialonfloodplains.Inaddition,theincreasedvelocityofstreamsandriversdraininghighlyurbanizedupperreacheswilltendtoincreasechannelincisement,therebyreducingthefilteringbenefitsofoverbankfloodingandsedimentdeposition.Althoughreservoirscreatedbydamsmaytrapsignificantamountsofsedimentandothersubstances,theyhaveafinitecapacityforsedimentfilling,whichisalreadybeingapproachedinsomeareas.Consequently,loadsofsediment,nutrients,andpathogenswilllikelyincreaseinlowerreachesofriverbasins,withexportsofthesematerialsexpectedtoelevatelevelsincoastalestuariesaswell.

321chAPTeR 13. Forests and Water

forestland(15to27millionacres)thatwouldberequiredtosubstantiallyreducenonpointsourcepollutantexports(Mitschandothers2001).IncreasedforestcoveragewillalsobecharacteristiconmanyinlandCoastalPlainareasofVirginia,NorthCarolina,SouthCarolina,Georgia,Alabama,Mississippi,andLouisiana(chapter5),atrendthatcouldprotectfloodplainforestsandmaintainwaterqualityofthosesystems.

AnotherlocationthatisanticipatedtoundergomajorincreasesinurbanizationisthesouthernhalfofFlorida,whereforestedwetlands(bothripariananddepressional)areprevalentandassociatedwaterqualityfunctionsareatrisk.Atatimewhenadditionalnonpointsourcepollutantexportsareoriginatingfromnewlyurbanizedlandscapes,aportionofthenaturalsystemswithpotentialtofilterpollutantloadswilldisappearwiththedemiseofforestedwetlands.

effects of expanded intensive Forest management on Water

TheestablishmentofpineplantationshasresultedinvastacreagesofintensivelymanagedpineforestsintheSouth.Plantationbasedforestry–usingpineandfastgrowinghardwoodspecies–islikelytoincreaseinthefuture(chapter9),anddemandfromashrinkinglandbaseandemergingwoodfibermarketsforbioenergyislikelytoincreasemanagementintensityonnewandestablishedplantations.ConsiderableinformationisavailableontheimpactsofforestmanagementonstreamflowthroughouttheUnitedStates(Brownandothers2005,JonesandPost2004).Forexample,

removingtheforestcanopyincreasesstreamflowforthefirstfewyears,butthemagnitude,timing,anddurationoftheresponsevariesconsiderablyamongecosystems.Insome,streamflowreturnstopreharvestlevelswithin10to20years;whereasinothers,streamflowremainshigherforseveraldecadesaftercutting,orcanevendroplowerthanpre-harvestlevels(Jacksonandothers2004).Thiswidevariationinresponsesisattributabletothecomplexinteractionsbetweenclimate,whichcanvaryconsiderablyfromdrytowetregimes,andvegetation,whichcanvaryinstructureandphenology(coniferousversusdeciduousforest).

Informationontherelationshipsbetweenspecificecosystemsorforesttypesandstreamflowcanbeinferredfromstudiesquantifyingannualevapotranspiration.Atannualtimescales,streamflowisapproximatedbythedifferencebetweenprecipitation(PPT)andevapotranspiration(ET),streamflow=PPT-ET.Therefore,foragivenamountofprecipitation,managementactionsthatalterevapotranspirationwillalsoalterstreamflow.Itiswellestablishedthatconiferousforests,withtheirgreatercapacityforinterceptionandtranspiration,havehigherevapotranspiration(andhencelowerstreamflow)thandeciduoushardwoodforests(Fordandothers2011,SwankandDouglass1974).Averagedacrossseveralclimateregimesandforesttypes,thedifferencebetweenconiferousandhardwoodforestsisabout55percentat1200mmyr-1precipitationandincreasingprecipitationwidensthisdifferenceinthetwoforesttypes.Evapotranspirationalsovariesconsiderablybetweenmanagedandunmanagedsouthernforests(table13.4).Thisvariationisimportantforevaluatingtheimplications

Table 13.4—Mean annual transpiration (mm yr-1) for southern forest types

Vegetation type Transpiration SourceLongleaf pine savanna 244 Ford and others 2008Old field 250 Stoy and others 2006Oak-pine-hickory forest 278 Oren and Pataki 2001Upland oak forest 313 Wullschleger and others 2001Mixed pine hardwood 355 Phillips and Oren 2001Mixed pine hardwood 442 Stoy and others 2006Planted loblolly pine 490 Stoy and others 2006Mixed pine hardwood 523 Schafer and others 2002

Slash pine flatwoodsEucalyptus hybrid plantation

563882

Powell and others 2005Estimated for Baker County, southwestern Georgia in 2006 for an average climate and rainfall yeara

Planted loblolly pine (early rotation) 328 Domec and others 2012; Sun and others 2010Planted loblolly pine (mid-rotation) 777 Domec and others 2012; Sun and others 2010

aDerived from a model that used data collected in 2006 by the Joseph W. Jones Ecological Research Center, 3988 Jones Center Drive, Newton, GA 39870. Model assumed no soil water limitation; all trees at age 5; 1,111 trees ha-1; and a leaf area index of 6 m2 m-2 (Mielke and others 1999).

322The Southern Forest Futures Project

ofincreasingpineplantationforestsintheSouthbecausethemagnitudeoftheeffectsonstreamflowdependsonthespecies,foresttype,orlandusebeingreplaced.Forexample,pineplantationsmayconsumenearlytwicethewaterconsumedbylongleafpinesavannas(table13.4).

Implicationsofincreasingmanagementintensityonwaterresourceswilldependonthespecificmanagementactivity.Increasingacreagesoffastgrowingspeciesforbioenergyproductionorcarbonsequestrationmayhavenegativeconsequencesforwateryield(Farleyandothers2005,Jacksonandothers2005b).Toillustrate,amatureeucalyptusplantation(age5,1,111treesha-1,leafareaindexof6m2m-2)growinginsouthwesternGeorgiacouldpotentiallyconsume882mmyr-1ofwater,exceedingotherforesttypesbyafactorof2.5(table13.4).Nitrogenfertilizationimprovesproductivityprimarilythoughincreasedleafarea(VoseandAllen1988),andevapotranspirationishighlycorrelatedwithleafareaindex(Sunandothersinpress).Shorteningrotationtimesusuallyincreasesstreamflowbydecreasingtheamountoftimethatthestandisatcanopyclosure,whenleafareaindexishighestandstreamflowislowest.Foranygivenleafarea,youngerorshortertreesalsohavehigherstomatalconductancethanolderortallertrees(Mooreandothers2004,Novickandothers2009,Schaferandothers2000).Althoughtranspirationperunitleafareaislessthanforyoungerforests,olderforestshavelargerleafareaandcaninterceptmorewater,andthereforehavegreaterevapotranspiration.Thismeansthatmanagingforolderforestsislikelytodecreasestreamflow.

ImpactsonwaterqualitywilldependonthetypeofmanagementactivityandtheeffectivenessofestablishedBestManagementPractices,whichwereoriginallydevelopedforlessintensivemanagement.Forexample,inreviewoftheimpactsofforestsfertilization,Foxandothers(2007)concludedthatcorrectlyappliedfertilizerrarelydegradeswaterquality.Incontrast,increasingthefrequencyofharvestforshorterrotationsmayhaveimpactsonsedimentyield,especiallyiftheharvestsresultingreatersoildisturbance(Ursic1986)orrequiremoreroadsandmorefrequentroadusage(Swift1988).

implications of climate change, land use change, and Population on Water Resources

Climate change impacts on water resources—Becauseofthecombinationofbiologicalandphysicalcontrolsonhydrologicprocesses,climatechangewillbothdirectlyandindirectlyimpactsouthernwaterresources(Brianandothers2004,Sunandothers2008).Thedirectimpactswilldependonhowtheamountandtimingofprecipitationarealteredandhowthisinfluencesbaseflow,stormflow,groundwaterrecharge,andflooding.Long-termU.S.GeologicalSurvey

streamflowdatasuggestthataverageannualstreamflowhasincreasedandthatthisincreasehasbeenlinkedtogreaterprecipitationineasternStatesoverthepast100years(IPCC2007,KarlandKnight1998,LinsandSlack1999);however,fewerthan66percentofallGeneralCirculationModelscanagreeonthedirectionofpredictedprecipitationchange,whetherwetterordrier(IPCC2007).Annualprecipitationwithinayearorfromoneyeartothenextisanaturalphenomenonrelatedtolarge-scaleglobalclimateteleconnections,suchasElNiñoSouthernOscillation,PacificDecadalOscillation,andNorthAtlanticOscillationcycles.ManyregionsoftheUnitedStateshaveexperiencedanincreasedfrequencyofprecipitationextremesoverthelast50years(Easterlingandothers2000,Huntington,2006,IPCC2007).AstheclimatewarmsinmostGeneralCirculationModels,thefrequencyofextremeprecipitationeventsincreasesacrosstheglobe(O’GormanandSchneider2009);however,thetimingandspatialdistributionofextremeeventsareamongthemostuncertainaspectsoffutureclimatescenarios(AllenandIngram2002,KarlandKnight1998).Despitethisuncertainty,recentexperiencewithdroughtsandlowflowsinmanyareasoftheUnitedStatesindicatethatevensmallchangesindroughtseverityandfrequencywillhaveamajorimpactonsociety,amongthemareductionindrinkingwatersupplies(Easterlingandothers2000,LuceandHolden2009).

Theindirectimpactsofclimatechangearerelatedtochangesintemperatureandatmosphericcarbondioxide.Intheshortterm,highertemperatureshavethepotentialtoincreaseevaporationandplantwateruseviatranspiration(astemperaturesincrease,theenergyavailableforevapotranspirationincreases),andthereforedecreaseexcessprecipitationavailableforstreamfloworgroundwaterrecharge.Warmertemperatureswillalsoinfluencethedurationandtimingofsnowmelt,acriticalfactorinecosystemswheresnowmeltdominateshydrologicprocesses.Theimpactsoftemperaturemaybeoffset(orexacerbated)bychangesinotherfactorsthatinfluenceevapotranspirationsuchasvaporpressure(warmairholdsmorewater),windpatterns(whichimpactboundarylayerresistance),increasesincarbondioxide(whichdecreasestomatalconductance),andchangesinnetradiation(influencedbychangesincloudcoverandaerosols).Inthelongerterm,awarmerclimateincombinationwithchangesinprecipitationwilllikelyshiftdistributionsoftreespecies,whichdifferconsiderablyintheamountofannualandseasonalwatertheyuseviatranspirationandinterception(Fordandothers2011,Sunandothers2011).Forexample,insomegeographicareas,ashiftfromhardwoodtopineforestsmayresultinyear-roundtranspirationandinterceptionandgreaterwateruse.Controlledstudieshavedemonstratedthatincreasedatmosphericcarbondioxidereducestranspirationinmanytreespecies,whichmaytranslateintoincreasedstreamflow

327chAPTeR 13. Forests and Water

Onaverage,waterstressduetothecombinedeffectsofpopulationandlandusechangewillincreaseintheSouthby10percent.

6.AllclimatechangescenariospredictedthattheSouthwouldlikelyseeincreasesinairtemperatureinthenext50yearsbutdifferedinpredictionsofprecipitationchangeacrosstheregion.ThecombinedeffectsofchangingtemperatureandprecipitationwillgenerallydecreasestreamflowacrosstheSouth(fig.13.13).Inaddition,streamflowwilllikelybecomemorevariablewithlowerflowsduringdroughtperiodsandhigherflowsduringwetperiodsthanexperiencedinthepast.

7.Watersupplystresswouldlikelyincreasesignificantlyunderallfourclimatechangescenarios(fig.13.14),largelycausedbyincreasesinwaterlossbyevapotranspirationresultingfromhigherairtemperatures,andalsobecauseofdecreasingprecipitationinsomeareas.Theeffectsofchangingclimateonwaterstresswillvarysignificantlyacrosstheregion(fig.13.15).Forexample,theWaSSImodelprojectsthatFrankfort,KYwillhavenegligiblechangeinwaterstressacrossthefourfutureclimatescenarios,whileOklahomaCity,OK,LittleRock,AR,andAustin,TXareprojectedtohavesignificantincreasesinwaterstress.

implications of Sea level change on coastal Areas

Sea-levelmayrisefrom0.4to2.0mbytheendofthe21stcentury(table13.5)(McMullenandJabbour2009,Rahmsorf2007,Solomonandothers2009).AlongtheAtlanticCoastinthestudyregionthereisapproximately7,297squaremiles(~4.6millionacres)ofcoastallandbelowanelevationof1.5meters(NorthCarolinaandFloridahavethemostcoastalareabelow1.5m),withanadditional5,573squaremiles(~3.5millionacres)ofcoastallandbetween1.5and3.5m.AlongtheGulfCoastthereisapproximately13,605squaremiles(~8.7millionacres)oflandbelowanelevationof1.5m(LouisianaandTexashavethemostcoastalareabelow1.5m),withanadditional6,430squaremiles(~4.1millionacres)ofcoastallandbetween1.5and3.5m(fig.13.16).Ifsealevelrose1.5mweestimatethat2,633squaremiles(~1.6millionacres)offorestscouldbeaffectedalongtheAtlanticCoast,and3,352squaremiles(~2.1millionacres)offorestscouldbeimpactedalongtheGulfCoast.Whenphysicalprocessesareconsideredbythecoastalvulnerabilityindex,alongtheAtlanticCoastNorthCarolinaandVirginiahavethemostcoastlineintheveryhigh-riskclass,andalongtheGulfCoast,LouisianaandTexashavethemostcoastlineintheveryhigh-riskclass(fig.13.17).

Projectionsofsealevelchangescanhelpmanagersidentifyportionsofthecoastlinethatcouldbemonitoredmoreclosely.Forexample,figure13.18showsthattheentireLouisianacoastlineisinthehighriskcategorywithcoastalareabelow1.5m,buttheGulfcoastportionofsouthernFloridaisranked

inthemoderateriskcategoryeventhoughitscoastalareaisalsobelow1.5m,suggestingthatitsresponsetoarisingseamaybeslowerthanifpredictedfromelevationalone(ThielerandHammar-Klose2000).Figure13.19showsthatportionsoftheNorthCarolinacoastlineandtheAtlanticcoastofFloridaareinthehighriskcategory,butbecausethosecoastalareasarebetween1.5and3.5m,asea-levelriseof1mmaynotaffectthosehigherelevationareas.

DiScuSSioN AND coNcluSioNS

Forestconversiontoagricultureorurbanlandusesconsistentlycausesincreasesindischarge,peakflow,andvelocityofstreams.Differencesinthenatureofhydrologicresponsestourbanizationamongsubregionsaresubstantial.Asexamples,thepronouncedeffectofurbandevelopmentonpeakflowsandstreamhydrographsfoundintheAppalachiansandPiedmontmaybeobscuredbynaturalprecipitationregimesinaridregions,suchaswesternTexaswherehydrographsfromlessdisturbedstreamsresemblethoseofurbanstreams(Grimmandothers2004).Similarly,thereductionsinbaseflowthatareoftenobservedfollowingincreasesinimperviousareainthePiedmontmaynotoccurintheflatterterrainoftheCoastalPlain.

Forestconversionsalsoresultinincreasesinsediment,waterchemistryindices,fecalcoliformandE.coli,andothersubstances.Becausedischargeandconcentrationsincreaseafterurbanization,loadsaregenerallyhigher.Physiographiccharacteristicssuchasslopeandsoiltexturestronglyinfluencehydrologyandsedimentexport,buttheirimpactonwaterchemistryislessthantheimpactofurbanization.ConversionofforestlandtourbanusesmayresultinhealthrisksforhumansasevidencedbylargeincreasesinfecalcoliformandE.coli,heavymetals,pharmaceuticals,andothersubstancesinstreamwater.Whileeffectivewatertreatmentmayovercomethisrisktodrinkingwater,thereremainssignificantpotentialfordirectcontactwithpollutedwaterasstreamsflowthroughresidentialareaspriortotreatment.

Eachriverbasinhasauniquelandusehistorythatmayhavelong-lastingeffects.Cuffneyandothers(2010)reportedthattheconversionofforesttourbanlandhadmorepronouncedeffectsonbenthicmacroinvertebratesinAtlanta;Birmingham,AL;andRaleigh,NCthantheconversionofagriculturetourbanlandhadinDallas,wherenaturalgrasslandhadalreadybeendegradedbyagricultureintherecentpast(anexampleantecedentlanduseimpactstakingprecedentoverhistoricallanduse).Infact,theirstudyfoundthatantecedentagriculturallandusemaskedtheeffectsofurbanizationinareasofhistoricforestuseaswell.

Physiographiccharacteristicscoulddeterminethethreshold,ortheresiliencetochange,thateachsubregiondisplaysin

333chAPTeR 13. Forests and Water

responsetochangesinlanduse.Forthisreason,McMahonandHarned(1998)recommendedincorporatingmeasuresofbothnaturalphysiographicvariationandeffectsofhumanactivityinwatershedstudiesandmanagementplans.Additionally,therehavebeensomeindicationsthatimpervioussurfaceincreasesmayhavehigherthresholdsforsignificantwaterdegradationintheCoastalPlainthanthePiedmontorSouthernAppalachians(Helmsandothers2009,MorganandCushman2005,Royandothers2003,Stednick1996,Utzandothers2009);butthisdoesnotappeartobetrueforallmeasures(Nagyandothers2012).

Theconceptofthresholdsofimperviousnessbeyondwhichsignificantdegradationofwaterqualityoccursisvagueandhadpreviouslybeenreportedat10-20percent(ArnoldandGibbons1996,BledsoeandWatson2001).However,somereportshavenotedsignificantchangesinwaterqualityatevenlowerlevelsofdevelopment,suchas<5percentimpervioussurface(Crim2007,Cuffneyandothers2010,Nagyandothers2012).Forinstance,at5percentimpervioussurface,Cuffneyandothers(2010)estimateda13to23percentdegradationofmacroinvertebrateassemblagescomparedtobackgroundconditions.Thissuggeststhatcaremustbetakenfromthefirststagesofdevelopmenttolimitimpactsonwaterresources.BoggsandSun(2011)suggestthatmaintaininghighETofvegetationinthegrowingseasoniskeytoreducingstormflowinurbanwatersheds.Furthermore,onceimpervioussurfacecoverexceeds30percent,deteriorationofwaterqualitybecomessevere(Calhounandothers2003,PaulandMeyer2001).Inareaswheredevelopmentisplannedorabouttobegin,itwouldbeveryusefultoidentifykeybioindicatorsfordetectingtheonsetofsignificantdegradation.

Amongthemostdramaticimpactsassociatedwithforestconversiontourbanoragriculturearechangesinaquaticpopulations.Thehighervelocityandchannelscouringassociatedwithurbanhydrologycreatesunstablehabitat,andthisiscompoundedbytheeffectsofdegradedwaterquality.Speciesrichnessandabundancegenerallydecline;andsomegroups,suchasmussels,maybeeliminatedfromparticularlocations.TheseimpactstendtobemostsevereintheAppalachians.Also,speciesthataretolerantofthealteredconditionsmayreplacethosethatareintolerant.AnexamplewasobservedintheGeorgiaPiedmontasreptilespeciesrichnessincreasedafterurbanization,whileamphibianrichnessdecreased(BarrettandGuyer2008).

Increasedintensificationofforestmanagementonasmallerlandbasecouldhaveimpactsonquantityandqualityofwater,especiallyatlocalscales.Ingeneral,anincreaseinpineplantationsorfastgrowinghardwoodspeciesmayresultingreaterwateruseviatranspiration(Fordandothers2011);however,themagnitudeandsignificanceofgreatertranspirationonwaterresourceswilldependonthe

communitytypethatisbeingreplacedandonsitespecifichydrologicprocesses.Inaddition,theimpactofgreaterwaterusemaybeoffsetbyanetreductionofforestcover.Increasedintensificationofforestmanagementactivitiesthatcreatemoresevereorfrequentsoildisturbance—suchassitepreparation,increasedharvestfrequencies,alargerroadnetwork,ormoretraffic—mayresultinincreasedsedimentandreducedwaterqualityifBestManagementPracticesarebypassed.

BasedonWaSSImodelresultsunderthefourfutureclimatescenariosconsideredinthischapter,streamflowsandwatersupplywillgenerallydecreaseandbecomemorevariableoverthenext50to100years.However,magnitudesandeventhesignsofchangesinstreamflowsresultingfromclimatechangewillvaryconsiderablyacrosstheregion,withsomesmallareas,suchaswesternTexas,experiencingincreasesinwatersupply.Otherareaswilllikelyexperiencedecreasesinsupply,particularlyinFlorida,Oklahoma,andnorthernTexas.Overall,climate-induceddecreasesinwatersupplyandincreaseddemandfromagrowinghumanpopulationwilllikelyresultinanincreaseinwatersupplystressintothenextcentury.

Considerablevariabilityofwaterresourcepredictionsamongthefutureclimatescenariosandtheabsenceofoverlappingpredictionsforanyparticularsubregionconfoundthecertaintyoffutureprojections.Despitetheseuncertainties,theimportanceofwaterresourcesforhumanandaquaticlifearguesforfurtherresearchandactivemanagement.

Ourprojectionsindicateagreaterriskofsea-levelriseformanycoastalareasinthiscentury.Thermalinertiadictatesthatoncethewatersrise,curbsinfuturegreenhousegasemissionswillnotproduceaquickreversal.Therefore,unlikeprecipitationdrivenfloodevents,floodingduetosea-levelrisewillhavelong-termconsequences.Coastalinundationisoneofthemostvisibleimpactsofrisingsealevels.Areasthatwereoncedryfurtherinlandwillgraduallyshifttoepisodicallyinundated(duringhightidesandstorms)andthentopermanentlyinundated.Theimpactofsealevelrisetothepointofinundationisobvious,butotherimpactsmaybelessvisible,suchasthesaltwatermarshesthatexemplifyanecosysteminbalancebetweenfreshwaterandsalineenvironments.Theseuniqueplacesprovideimportantbreedinghabitatformanyterrestrialandaquaticanimalspecies.However,rapidlyrisingsealevelswillpermeatenon-salineforestsandgrasslands,causinglossesofexistingvegetationwithoutthepossibilityofreplacementbymoresalttolerantspecies.Oncetheexistingvegetationisdead,therootstructurethatbindsthesoilsystemtogetherandprovidesabufferfromincomingtideswillalsobelost,andcoastalerosionislikelytoaccelerate.Althoughcoastalerosionisanaturallyoccurringprocessinbarrierislandsandmanyotherareas,theincreaseinrateandseverity

334The Southern Forest Futures Project

thatislikelywithrisingsealevelscouldresultinagreatlyacceleratedlossofvaluablecoastalproperty.

Finally,acombinationofpressureonwaterresourcesfromincreasinghumanpopulationsandrisingsealevelscouldseverelyreducefreshwatersuppliesalongcoastalareas.Asfreshwaterisdrawnoutofshallowgroundwatersystems,adjacentbrackishwaterwouldlikelyfillthevoid,thusraisingtheriskofsaltwatercontaminationtodrinkingwatersupplies.Risesinsealevelwillfurtherincreasetheriskofcontaminationassalinewaterlevelsrise.ThelossofgroundwatersuppliesinplaceslikeFloridawouldhaveenormoussocialandeconomicimplicationsandmaybemoresignificantthancoastalinundationintheneartomediumfuture.

kNoWleDGe AND iNFoRmATioN GAPS

Paststudiesonforest-waterrelationsthathavebeenconductedprimarilyinforestedwatershedsarenotsufficienttoaddressissuesinmorecomplex,humandominatedlandscapes.AkeyissueistherelationshipbetweenincreasingurbanizationanddiminishingavailablewatersupplyforhumansintheSouth.Weneedtounderstandmoreaboutthenatureofthisrelationshipandhowitmaychangeacrossthearrayofsouthernphysiographicfeatures.Complexityincreaseswiththeinteractiveeffectsofmultipledriversincludinglandusechange,climatechange,populationgrowth,andthenaturalvariabilityinthehydrologiccycle.Abetterunderstandingiscriticallyneededinadvanceofthenextmajordrought,whoseimpactsmaybeexacerbatedbyexpectedincreasesinhumanpopulationsandimpervioussurfacesinmanyareasoftheSouth(chapter4).

Theramificationsofurbanizationonsurfacewaterandsubsequently,humanhealthisanothertopicthatdeservesgreaterattention.VeryhighcountsoffecalcoliformandE.colihavebeendocumentedinurbanstreams,butthepotentialriskstohumanhealthhavenotyetbeenassessed.Researchisneededoncoastalareas,whichhavenotbeenadequatelystudiedandareexpectedtoundergohighpopulationgrowthanddevelopmentratesincomingyears.Also,thesensitivitiesofaquaticorganismstourbanizationhavebeendemonstratedbutnotquantified,andshouldbemorefullyunderstoodsothattheycanserveasbioindicatorsofimpendingdegradationtosurfacewaterresources.Thefocusofthischapterwasonsurfacewaterimpactsassociatedwithlanduseconversion,butliteraturesearchesproducedlittleinformationontherelationshipsofgroundwatertolanduseandlandcover.Becausemanysoutherncommunitiesareconsideringexpandeduseofaquifers,believingthemtobe“droughtproof,”theywillneedtounderstandtheextenttowhichchangesinlandusemightaffectgroundwaterresources.

TheWaSSImodelprovidesageneralsummaryofwatersupplyanddemanddynamicsacrosslargeregionsoverextendedperiodsoftime,requiringassimilationandintegrationoflargedatasetsandtheuseofextensiveGISandcomputingresources.Theselargedatarequirementsnecessitateddevelopmentofsimplifyingassumptionstosimulatewaterresourcechangesinresponsetoclimatechange.Forexample,theWaSSImodelusedforthischapterdoesnotincludeprovisionsforwatersupplyreservoirstorageorinterbasinwatertransfers;italsoassumesthatallin-streamsurfacewaterisavailableforhumanuse(noecologicalflowisreserved)andthatriverflowsareroutedthroughtherivernetworkinstantaneouslyduringagivenmonth.Itisimportanttokeepinmindthattheseassumptionsmayimpactwatersupplystresspredictionsforsomeareasacrosstheregion.Futurelandusechangesarelikelytoaffectwaterqualityandextremehydrologysuchaspeakflowrate,issuesthatarenotaddressedyetbytheWaSSImodel.Thetradeoffsbetweenwaterresourcesandcarbonsequestrationarenotwellunderstoodandneedtobequantifiedbeforeembarkingonbioenergydevelopmentandforestmanagementtomitigateclimatewarming.

Comparedtothephysicsofoceanicthermalexpansion,relativelylittleisknownabouttherateofglobalwarming,thechangesinoceansurfacealbedo,ortheinputofwaterfromsnowandicemeltsonland.Manyoftheseunknownsarenotafunctionofsciencegaps,butratheruncertaintyaboutfutureincreasesingreenhousegasemissions.Conversely,thephysicsofthermalexpansionarewellunderstood.Aspredictionsofglobalwarmingratesimprove,theaccuracyofsea-levelrisewillalsoimprovesignificantly.Finally,demographicchangesandassociatedpressuresongroundwaterresourcesarealsounknown.Theseknowledgegapsneedtobeaddressedbeforeamorecompleteassessmentofclimatechangeonsea-levelriseispossible.

liTeRATuRe ciTeD

Ainslie,W.B.2002.Forestedwetlands.In:Wear,D.N.;Greis,J.G.,eds. Southernforestresourceassessment:summaryreport.Gen.Tech,Rep.SRS–54.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation:479–500.

Ainsworth,E.A.;Rogers,A.2007.Theresponseofphotosynthesisandstomatalconductancetorising[CO2]:mechanismsandenvironmentalinteractions.Plant,CellandEnvironment.30:258–270.

Allen,M.R.;Ingram,W.J.2002.Constraintsonfuturechangesinclimateandthehydrologiccycle.Nature.419:224–232.

Amatya,D.M.;Callahan,T.J.;Radecki-Pawlik,A.[andothers].2008.HydrologicandwaterqualitymonitoringonTurkeyCreekwatershed,FrancisMarionNationalForest,SC.In:ProceedingsoftheSouthCarolinawaterresourcesconference.Clemson,SC:ClemsonUniversity.http://www.clemson.edu/restoration/events/past_events/sc_water_resources/t3_proceedings_presentations/t3_zip/williams.pdf.[Dateaccessed:October28,2010].

335chAPTeR 13. Forests and Water

Amatya,D.M.;Sun,G.;Skaggs,R.W.[andothers].2006.Hydrologiceffectsofglobalclimatechangeonalargedrainedpineforest.In:Williams,T.,ed.Hydrologyandmanagementofforestedwetlands:Proceedingsoftheinternationalconference.St.Joseph,MI:AmericanSocietyofAgriculturalandBiologicalEngineers:583–594.

Anderson,S.A.;Masters,R.E.1992.Riparianforestbuffers.FactSheet5034.Stillwater,OK:OklahomaStateUniversity,CooperativeExtensionService.7p.

Andrews,W.J.;Becker,M.F.;Smith,S.J.;Tortorelli,R.L.2009.Summaryofsurface-waterqualitydatafromtheIllinoisRiverbasininnorthOklahoma,1970–2007.Rev.ScientificInvestigationsReport.2009–5182.Reston,VA:U.S.GeologicalSurvey.39p.

Arnold,C.L.,Jr.;Gibbons,C.J.1996.Impervioussurfacecover:theemergenceofakeyenvironmentalindicator.JournaloftheAmericanPlanningAssociation.62:243–258.

Bailey,R.G.1980.DescriptionoftheecoregionsoftheUnitedStates.Misc.Publ.1391.Washington,DC:U.S.DepartmentofAgricultureForestService.77p.

Barrett,K.;Guyer,C.2008.DifferentialresponsesofamphibiansandreptilesinriparianandstreamhabitatstolandusedisturbancesinwesternGeorgia,USA.BiologicalConservation.141:2290–2300.

Becker,C.J.2006.WaterqualityandpossiblesourcesofnitrogenandbacteriatoRockandTravertineCreeks,ChickasawNationalRecreationArea,Oklahoma,2004.ScientificInvestigationsReport.2005–5279.Reston,VA:U.S.GeologicalSurvey.24p.

Beighley,R.E.;Melack,J.M.;Dunne,T.2003.ImpactsofCalifornia’sclimaticregimesandcoastallandusechangeonstreamflowcharacteristics.JournaloftheAmericanWaterResourcesAssociation.39:1419–1433.

Biggs,B.J.F.1996.Patternsinbenthicalgaeofstreams.In:Stevenson,R.J.;Brothwell,M.L.;Lowe,R.L.,eds.Algalecology:freshwaterbenthicecosystems.SanDiego:AcademicPress:31-56.

Binkley,D.;Brown,T.C.1993.Managementimpactsonwaterqualityofforestsandrangelands.Gen.Tech.Rep.RM–239.FortCollins,CO:U.S.DepartmentofAgricultureForestService,RockyMountainForestandRangeExperimentStation.114p.

Bledsoe,B.P.;Watson,C.C.2001.Effectsofurbanizationofchannelinstability.JournaloftheAmericanWaterResourcesAssociation.37:255–270.

Blevins,D.W.2004.HydrologyandcyclingofnitrogenandphosphorousinLittleBeanMarsh:aremnantriparianwetlandalongtheMissouriRiverinPlatteCounty,Missouri,1996–97.ScientificInvestigationsReport2004–5171.Reston,VA:U.S.GeologicalSurvey.78p.

Boggs,J.;Sun,G.2011.UrbanizationalterswatershedhydrologyinthePiedmontofNorthCarolina.Ecohydology.4:256-264.

Bolstad,P.V.;Swank,W.T.1997.CumulativeimpactsoflanduseonwaterqualityinaSouthernAppalachianwatershed.JournaloftheAmericanWaterResourcesAssociation.33(3):519–533.

Bosch,J.M.;Hewlett,J.D.1982.Areviewofcatchmentexperimentstodeterminetheeffectofvegetationchangesonwateryieldandevapotranspiration.JournalofHydrology.55:3–23.

Brian,H.H.;Callaway,M.;Smith,J.;Karshen,P.2004.ClimatechangeandU.S.waterresources:frommodeledwatershedimpactstonationalestimates.JournaloftheAmericanWaterResourcesAssociation.40:129–148.

Brinson,M.M.1993.Ahydrogeomorphicclassificationforwetlands.Tech.Rep.WRP–DE–4.Vicksburg,MS:U.S.ArmyCorpsofEngineers,WaterwaysExperimentStation.101p.

Brown,A.E.;Zhang,L.;McMahon,T.A.[andothers].2005.Areviewofpairedcatchmentstudiesfordeterminingchangesinwateryieldresultingfromalterationsinvegetation.JournalofHydrology.310:28–61.

Brown,T.C.;Hobbins,M.T.;Ramirez,J.A.2008.SpatialdistributionofwatersupplyintheconterminousUnitedStates.JournaloftheAmericanWaterResourcesAssociation.44:1474–1487.

Calhoun,D.L.;Frick,E.A.;Buell,G.R.2003.Effectsofurbandevelopmentonnutrientloadsandstreamflow,upperChattahoocheeRiverbasin,Georgia,1976–2001.In:Hatcher,K.J.,ed.Proceedingsofthe2003Georgiawaterresourcesconference.Athens,GA:TheUniversityofGeorgia,InstituteofEcology.[Unnumberedpages].

Casarim,F.2009.LegacysedimentsinSoutheasternUnitedStatesCoastalPlainstreams.Auburn,AL:AuburnUniversity.155p.M.S.thesis.

Chadwick,M.A.;Dobberfuhl,D.R.;Benke,A.C.[andothers].2006.Urbanizationaffectsstreamecosystemfunctionbyalteringhydrology,chemistry,andbioticrichness.EcologicalApplications.16:1796–1807.

Chessman,B.;Growns,I.;Currey,J.;Plunkett-Cole,N.1999.Predictingdiatomcommunitiesatthegenuslevelfortherapidbiologicalassessmentofrivers.FreshwaterBiology.41:317–331.

Childers,D.L.;Gosselink,J.G.1990.Assessmentofcumulativeimpactstowaterqualityinaforestedwetlandlandscape.JournalofEnvironmentalQuality.19:455–464.

Clinton,B.D.;Vose,J.M.2006.VariationinstreamwaterqualityinanurbanheadwaterstreamintheSouthernAppalachians.Water,Air,andSoilPollution.169:331–353.

Crim,J.F.2007.Waterqualitychangesacrossanurban-rurallandusegradientinstreamsofthewestGeorgiapiedmont.Auburn,AL:AuburnUniversity.130p.M.S.thesis.

Cuffney,T.F.;Brightbill,R.A.;May,J.T.;Waite,I.R.2010.Responsesofbenthicmacroinvertebratestoenvironmentalchangesassociatedwithurbanizationinninemetropolitanareas.EcologicalApplications.20(5):1384–1401.

Dale,V.H.;Joyce,J.A.;McNulty,S.[andothers].2001.Climatechangeandforestdisturbances.BioScience.51:723–734.

delaCretaz,A.L.;Barten,P.K.2007.LanduseeffectsonstreamflowandwaterqualityintheNortheasternUnitedStates.NewYork:CRCPress.319p.

Dennis,J.V.1988.Thegreatcypressswamps.BatonRouge,LA:LouisianaStateUniversityPress.232p.

DiDonato,G.T.;Stewart,J.R.;Sanger,D.M.[andothers].2009.Effectsofchanginglanduseonthemicrobialwaterqualityoftidalcreeks.MarinePollutionBulletin.58:97–106.

DomecJ.C.,Sun,G.,Noormets,A.[andothers].2012.Acomparisonofthreemethodstoestimateevapotranspirationintwocontrastingloblollypineplantations:age-relatedchangesinwateruseanddroughtsensitivityofevapotranspirationcomponents.ForestScience.58:497-512.

Duryea,M.L.;Hermansen,A.1997.Cypress:Florida’smajesticandbeneficialwetlandstree.CIR1186.Gainesville,FL:UniversityofFlorida,FloridaCooperativeExtensionService,InstituteofFoodandAgriculturalServices.12p.http://edis.ifas.ufl.edu.[Dateaccessed:March15,2009].

Easterling,D.R.;Evans,J.L.;Groisman,P.Y.[andothers].2000.Observedvariabilityandtrendsinextremeclimateevents:abriefreview.BulletinoftheAmericanMeteorologicalSociety.81:417–425.

Ernst,K.A.;Brooks,J.R.2003.Prolongedfloodingdecreasedstemdensity,treesizeandshiftedcompositiontowardsclonalspeciesinacentralFloridahardwoodswamp.ForestEcologyandManagement.173:261–279.

Exum,L.R.;Bird,S.L.;Harrison,J.;Perkins,C.A.2005.EstimatingandprojectingimperviouscoverintheSoutheasternUnitedStates.EPA/600/R–05/061.Athens,GA:U.S.EnvironmentalProtectionAgency,EcosystemsResearchDivision.133p.

336The Southern Forest Futures Project

Farley,K.;Jobbagy,E.;Jackson,R.B.2005.Effectsofafforestationonwateryield:aglobalsynthesiswithimplicationsforpolicy.GlobalChangeBiology.11:1565–1576.

Faulkner,S.2004.Urbanizationimpactsonthestructureandfunctionofforestedwetlands.UrbanEcosystems.7:89–106.

Ford,C.R.;Brooks,J.R.2002.DetectingecosystemresponsetoincreasingriverflowinsouthwestFlorida,USA.ForestEcologyandManagement.160:45–64.

Ford,C.R.;Hubbard,R.M.;Vose,J.M.2011.QuantifyingstructuralandphysiologicalcontrolsoncanopytranspirationofplantedpineandhardwoodstandspeciesintheSouthernAppalachians.Ecohydrology.4(2):183-195.

Ford,C.R.;Mitchell,R.J.;Teskey,R.O.2008.Watertabledepthaffectsproductivity,wateruse,andtheresponsetonitrogenadditioninasavannasystem.CanadianJournalofForestResearch.38:2118–2127.

Fox,T.R.;Allen,H.L.;Albaugh,T.J.[andothers].2007.ForestfertilizationandwaterqualityintheUnitedStates.BetterCrops.91:5–7.

Gangloff,M.M.;Feminella,J.W.2007.StreamchannelgeomorphologyinfluencesmusselabundanceinSouthernAppalachianstreams,USA.FreshwaterBiology.52:64–74.

Gillies,R.R.;BrimBox,J.;Symanzik,J.;Rodemaker,E.J.2003.EffectsofurbanizationontheaquaticfaunaoftheLineCreekwatershed,Atlanta—asatelliteperspective.RemoteSensingofEnvironment.86:411–422.

Grace,J.M.2005.ForestoperationsandwaterqualityintheSouth.TransactionsoftheASAE.48(2):871–880.

Gresham,C.A.1989.Aliteraturereviewondevelopingpocosins.In:Hook,D.D.;Lea,R.,eds.Proceedingsofthesymposium:theforestedwetlandsoftheSouthernUnitedStates.Gen.Tech.Rep.SE–50.Asheville,NC:U.S.DepartmentofAgricultureForestService,SoutheasternForestExperimentStation:44–50.

Grimm,N.B.;Arrowsmith,J.R.;Eisinger,C.[andothers].2004.Effectsofurbanizationonnutrientbiogeochemistryofaridlandstreams.In:Defries,R.;Asner,G.;Houghton,R.,eds.Ecosysteminteractionswithlandusechange.Geophys.Monogr.Ser.153.Washington,DC:AmericanGeophysicalUnion:129–146.

Groffman,P.M.;Bain,D.J.;Band,L.E.[andothers].2003.Downbytheriverside:urbanriparianecology.FrontiersinEcologyandtheEnvironment.1(6):315–321.

Hagen,E.M.;Webster,J.R.;Benfield,E.F.2006.Areleafbreakdownratesausefulmeasureofstreamintegrityalonganagriculturallandusegradient?JournalofNorthAmericanBenthologicalSociety.25(2):330–343.

Hammar-Klose,E.S.;Thieler,E.R.2001.Coastalvulnerabilitytosea-levelrise:apreliminarydatabasefortheU.S.Atlantic,Pacific,andGulfofMexicoCoasts.[CD–ROM].DigitalDataSer.DDS–68.http://pubs.usgs.gov/dds/dds68.[Dateaccessed:October28,2010].

Helms,B.S.2008.ResponseofaquaticbiotatochanginglandusepatternsinstreamsofwestGeorgia,USA.Auburn,AL:AuburnUniversity.224p.Ph.D.dissertation.

Helms,B.S.;Feminella,J.W.;Pan,S.2005.DetectionofbioticresponsestourbanizationusingfishassemblagesfromsmallstreamsofwesternGeorgia,USA.UrbanEcosystems.8:39-57.

Helms,B.S.;Schoonover,J.E.;Feminella,J.W.2009.SeasonalvariabilityoflanduseimpactsonmacroinvertebrateassemblagesinstreamsofwesternGeorgia,USA.JournaloftheNorthAmericanBenthologicalSociety.28(4):991–1006.

Hibbert,A.R.1967.Foresttreatmenteffectsonwateryield.In:Sopper,W.E.;Lull,H.W.,eds.Foresthydrology:ProceedingsofaNationalScienceFoundationadvancedscienceseminar.NewYork:PergamonPress:527–543.

Holland,A.F.;Sanger,D.M.;Gawle,C.P.[andothers].2004.Linkagesbetweentidalcreekecosystemsandthelandscapeanddemographicattributesoftheirwatersheds.JournalofExperimentalMarineBiologyandEcology.298:151–178.

Houlahan,J.E.;Findlay,C.S.2003.Theeffectsofadjacentlanduseonwetlandamphibianspeciesrichnessandcommunitycomposition.CanadianJournalofFisheriesandAquaticSciences.60:1078–1094.

Huntington,T.G.2006.Evidenceforintensificationoftheglobalwatercycle:reviewandsynthesis.JournalofHydrology.319:83–95.

IntergovernmentalPanelonClimateChange(IPCC).2007.ContributionofworkinggroupsI,II,andIIItothefourthassessmentreportoftheintergovernmentalpanelonclimatechange.In:Pachauri,R.K.;Reisinger,A.,eds.Geneva,Switzerland:Climatechange2007:Synthesisreport.104p.

Jackson,C.R.;Martin,J.K.;Leigh,D.S.;West,L.T.2005a.Asoutheasternpiedmontwatershedsedimentbudget:evidenceforamulti-millennialagriculturallegacy.JournalofSoilandWaterConservation.60:298–310.

Jackson,C.R.;Sun,G.;Amatya,D.M.[andothers].2004.FiftyyearsofforesthydrologyintheSoutheast.In:Ice,G.G.;Stednick,J.D.,eds.Acenturyofforestandwildlandwatershedlessons.Bethesda,MD:SocietyofAmericanForesters:33–112.

Jackson,R.B.;Jobbagy,E.G.;Avissar,R.[andothers].2005b.Tradingwaterforcarbonwithbiologicalcarbonsequestration.Science.310:1944–1947.

Jones,J.A.;Post,D.A.2004.SeasonalandsuccessionalstreamflowresponsetoforestcuttingandregrowthintheNorthwestandEasternUnitedStates.WaterResourcesResearch.40:W05203.

Karl,T.R.;Knight,R.W.1998.Seculartrendsofprecipitationamount,frequency,andintensityintheUSA.BulletinoftheAmericanMeteorologySociety.79:231–241.

Kenny,J.F.;Barber,N.L.;Hutson,S.S.[andothers].2009.EstimateduseofwaterintheUnitedStatesin2005.Circ.1344.Reston,VA:U.S.DepartmentoftheInterior,U.S.GeologicalSurvey.52p.

Klapproth,J.C.;Johnson,J.E.2000.Understandingthesciencebehindriparianforestbuffers:effectsonwaterquality.VirginiaCooperativeExtensionPubl.Blacksburg,VA:VirginiaPolytechnicInstituteandStateUniversity:420–451.

Kolpin,D.W.;Furlong,E.T.;Meyer,M.T.[andothers].2002.Pharmaceuticals,hormones,andotherorganicwastewatercontaminantsinU.S.streams,1999–2000:anationalreconnaissance.EnvironmentalScienceandTechnology.36:1202–1211.

Koren,V.;Smith,M.;Duan,Q.2003.Useofaprioriparameterestimatesinthederivationofspatiallyconsistentparametersetsofrainfall-runoffmodels.In:Duan,Q.;Sorooshian,S.;Gupta,H.[andothers],eds.Calibrationofwatershedmodelswaterscienceandapplications.AmericanGeophysicalUnion:239–254.Vol.6.

Lehrter,J.C.2006.Effectsoflanduseandlandcover,streamdischarge,andinterannualclimateonthemagnitudeandtimingofnitrogen,phosphorus,andorganiccarbonconcentrationsinthreeCoastalPlainwatersheds.WaterEnvironmentResearch.78(12):2356–2368.

Lenat,D.R.;Crawford,J.K.1994.EffectsoflanduseonwaterqualityandaquaticbiotaofthreeNorthCarolinaPiedmontstreams.Hydrobiologia.294:185–199.

Likens,G.E.;Bormann,F.H.1995.Biogeochemistryofaforestedecosystem,2dedition.NewYork:Springer-Verlag.159p.

Lins,H.;Slack,J.R.1999.StreamflowtrendsintheUnitedStates.GeophysicalResearchLetters.26:227–230.

Lowrance,R.R.;Leonard,R.A.;Asmussen,L.E.;Todd,R.L.1985.NutrientbudgetsforagriculturalwatershedsinthesoutheasternCoastalPlain.Ecology.66(1):287–296.

337chAPTeR 13. Forests and Water

Luce,C.H.;Holden,Z.A.2009.DecliningannualstreamflowdistributionsinthePacificNorthwestUnitedStates,1948–2006.GeophysicalResearchLetters.36:L16401.

Mallin,M.A.;Williams,K.E.;Esham,E.C.;Lowe,R.P.2000.Effectofhumandevelopmentonbacteriologicalwaterqualityincoastalwatersheds.EcologicalApplications.10:1047–1056.

Maloney,K.O.;Feminella,J.W.2006.Evaluationofsingle-andmulti-metricbenthicmacroinvertebrateindicatorsofcatchmentdisturbanceovertimeattheFortBenningMilitaryInstallation,Georgia,USA.EcologicalIndicators.6:469–484.

Martin,W.H.;Boyce,S.G.1993.Introduction:thesoutheasternsetting.In:Martin,W.H.;Boyce,S.G.;Echternacht,A.C.,eds.BiodiversityoftheSoutheasternUnitedStates:LowlandTerrestrialCommunities(Vol.2).NewYork:JohnWiley:1-46.

May,S.K.;Kimball,W.H.;Grady,N.;Dolan,R.1982.CEIS:thecoastalerosioninformationsystem.ShoreandBeach.50:19–26.

McCullen,C.P.;Jabbour,J.2009.Climatechangesciencecompendium.http://www.unep.org/compendium2009/.[Dateaccessed:October28,2010].

McMahon,G.;Bales,J.D.;Coles,J.[andothers].2003.Useofstagedatatocharacterizehydrologicconditionsinanurbanizingenvironment.JournaloftheAmericanWaterResourcesAssociation.39:1529–1546.

McMahon,G.;Harned,D.A.1998.Effectofenvironmentalsettingonsediment,nitrogen,andphosphorousconcentrationsinAlbemarle-PamlicoDrainageBasin,NorthCarolinaandVirginia,USA.EnvironmentalManagement.22(6):887–903.

Meyer,J.L.1992.SeasonalpatternsofwaterqualityinBlackwaterRiversoftheCoastalPlain,SoutheasternUnitedStates.In:Becker,C.D.;Neitzel,D.A.,eds.WaterqualityinNorthAmericanriversystems.Columbus,OH:BartellePress:249–276.

Mielke,M.S.;Oliva,M.A.;deBarros,N.F.[andothers].1999.Stomatalcontroloftranspirationinthecanopyofaclonaleucalyptusgrandisplantation.Trees—StructureandFunction.13:152–160.

Mitsch,W.J.;Day,J.W.;Gilliam,J.W.[andothers].2001.ReducingnitrogenloadingtotheGulfofMexicofromtheMississippiRiverBasin:strategiestocounterapersistentecologicalproblem.BioScience.51(5):373–388.

Moore,G.W.;Bond,B.J.;Jones,J.A.[andothers].2004.Structuralandcompositionalcontrolsontranspirationin40-and450-year-oldriparianforestsinwesternOregon,USA.TreePhysiology.24:481–491.

Morgan,R.P.;Cushman,S.E.2005.UrbanizationeffectsonstreamfishassemblagesinMaryland,USA.JournaloftheNorthAmericanBenthologicalSociety.24:643–655.

Nagy,R.C.;Lockaby,B.G.;Helms,B.2011.Waterresourcesandlanduse/coverinahumidregion:TheSoutheasternUnitedStates.JournalofEnvironmentalQuality.40(3):867-878.

Nagy,R.C.;Lockaby,B.G.;Kalin,L.;Anderson,C.2012.Effectsofurbanizationonstreamhydrologyandwaterquality:theFloridaGulfCoast.HydrologicalProcesses.26(13):2019–2030.

Naiman,R.J.;Décamps,H.;McClain,M.E.2005.Riparia:ecology,conservation,andmanagementofstreamsidecommunities.Burlington,MA:ElsevierAcademicPress.430p.

NationalResearchCouncil.1995.Wetlands:characteristicsandboundaries.Washington,DC:NationalAcademyPress.328p.

Novick,K.;Oren,R.;Stoy,P.[andothers].2009.Therelationshipbetweenreferencecanopyconductanceandsimplifiedhydraulicarchitecture.AdvancesinWaterResources.32:809–819.

Novotny,V.2003.Waterquality:diffusepollutionandwatershedmanagement.NewYork:JohnWiley.888p.

NPADataServices,Inc.1999.Economicdatabases—mid-rangegrowthprojections1967–2050.Arlington,VA:RegionalEconomicProjectionSeries.

NaturalResourcesConservationService(NRCS).2009.Watershedboundarydataset.http://geo.data.gov/geoportal/catalog/search/resource/details.page?uuid=%7B5DE81693-574F-DB99-9B78-048D2B595498%7D.[Dateaccessed:January9,2009].

O’Gorman,P.A.;Schneider,T.2009.Thephysicalbasisforincreasesinprecipitationextremesinsimulationsof21st-centuryclimatechange.ProceedingsoftheNationalAcademyofSciences.106:14,773–14,777.

Oki,T.;Kanae,S.2006.Globalhydrologicalcyclesandworldwaterresources.Science.313:1068–1072.

Olivera,F.;DeFee,B.B.2007.UrbanizationanditseffectonrunoffintheWhiteoakBayouwatershed,Texas.JournaloftheAmericanWaterResourcesAssociation.43:170–182.

Onorato,D.;Marion,K.R.;Angus,R.A.1998.LongitudinalvariationsintheichthyofaunalassemblagesoftheupperCahabaRiver:possibleeffectsofurbanizationinawatershed.JournalofFreshwaterEcology.13:139–154.

Oren,R.;Pataki,D.E.2001.Transpirationinresponsetovariationinmicroclimateandsoilmoistureinsoutheasterndeciduousforests.Oecologia.127:549–559.

Orser,P.N.;Shure,D.J.1972.EffectsofurbanizationonthesalamanderDesmognathusfuscusfuscus.Ecology.53:1148-1154.

Palmer,T.1994.Lifelines:thecaseforriverconservation.Washington,DC:IslandPress.256p.

Parry,M.L.;Canziani,O.F.;Palutikof,J.P.[andothers],eds.2007.ContributionoftheworkinggroupIItothefourthassessmentreportoftheintergovernmentalpanelonclimatechange,2007.Cambridge,UnitedKingdom;NewYork:CambridgeUniversityPress.976p.

Paul,M.J.;Meyer,J.L.2001.Streamsintheurbanlandscape.AnnualReviewofEcology,Evolution,andSystematics.32:333–365.

Phillips,N.;Oren,R.2001.Intra-andinter-annualvariationintranspirationofapineforest.EcologicalApplications.11:385–396.

Powell,T.L.;Starr,G.;Clark,K.L.[andothers].2005.Ecosystemandunderstorywaterandenergyexchangeforamature,naturallyregeneratedpineflatwoodsforestinnorthFlorida.CanadianJournalofForestResearch.35:1568–1580.

Price,S.J.;Dorcas,M.E.;Gallant,A.L.[andothers].2006.Threedecadesofurbanization:estimatingtheimpactofland-coverchangeonstreamsalamanderpopulations.BiologicalConservation.133:436–441.

Rahmstorf,S.2007.Asemi-empiricalapproachtoprojectingfuturesea-levelrise.Science.315:368–370.

Rose,S.;Peters,N.E.2001.EffectsofurbanizationonstreamflowintheAtlantaarea(Georgia,USA):acomparativehydrologicalapproach.HydrologicalProcesses.15:1441–1457.

Ross,M.S.;O’Brien,J.J.;Sternberg,L.D.L.1994.Sea-levelriseandthereductioninpineforestsintheFloridaKeys.EcologicalApplications.4:144–156.

Roy,A.H.;Freeman,M.C.;Freeman,B.J.[andothers].2005.Investigatinghydrologicalterationasamechanismoffishassemblageshiftsinurbanizingstreams.JournaloftheNorthAmericanBenthologicalSociety.24:656–678.

Roy,A.H.;Rosemond,A.D.;Paul,M.J.[andothers].2003.Streammacroinvertebrateresponsetocatchmenturbanisation(Georgia,U.S.A.).FreshwaterBiology.48:329–346.

Schafer,K.V.R.;Oren,R.;Lai,C.;Katul,G.2002.HydrologicbalanceinanintacttemperateecosystemunderambientandelevatedatmosphericCO2concentration.GlobalChangeBiology.8:895–911.

338The Southern Forest Futures Project

Schafer,K.V.R.;Oren,R.;Tenhunen,J.D.2000.Theeffectoftreeheightoncrownlevelstomatalconductance.PlantCellandEnvironment.23:365–375.

Schoonover,J.E.;Lockaby,B.G.2006.LandcoverimpactsonstreamnutrientsandfecalcoliforminthelowerPiedmontofwestGeorgia.JournalofHydrology.331:371–382.

Schoonover,J.E.;Lockaby,B.G.;Helms,B.S.2006.ImpactsoflandcoveronstreamhydrologyinthewestGeorgiaPiedmont,USA.JournalofEnvironmentalQuality.35:2123–2131.

Schoonover,J.E.;Lockaby,B.G.;Pan,S.2005.Changesinchemicalandphysicalpropertiesofstreamwateracrossanurban-ruralgradientinwesternGeorgia.UrbanEcosystems.8:107–124.

Scott,M.C.;Helfman,G.S.;McTammany,M.E.[andothers].2002.MultiscaleinfluencesonphysicalandchemicalstreamconditionsacrossBlueRidgelandscapes.JournaloftheAmericanWaterResourcesAssociation.38(5):1379–1392.

Solley,W.B.;Pierce,R.R.;Perlman,H.A.1998.Estimateduseofwaterin1995.Circ.1200.Alexandria,VA:U.S.GeologicalSurvey.http://water.usgs.gov/watuse/pdf1995/pdf/summary.pdf.[Dateaccessed:July,2007].

Soloman,S.;Plattner,G-k.;Knutt,R.;Friedlingstein,P.2009.Irreversibleclimatechangeduetocarbondioxideemissions.ProceedingsoftheNationalAcademyofSciencesoftheUSA.106(6):1704–1709.

Sponseller,R.A.;Benfield,E.F.;Valett,H.M.2001.Relationshipsbetweenlanduse,spatialscaleandstreammacroinvertebratecommunities.FreshwaterBiology.46:1409–1424.

Stednick,J.D.1996.Monitoringtheeffectsoftimberharvestonannualwateryield.JournalofHydrology.176:79–95.

Stoy,P.;Katul,G.;Siqueira,M.[andothers].2006.SeparatingtheeffectsofclimateandvegetationonevapotranspirationalongasuccessionalchronosequenceintheSoutheasternUnitedStates.GlobalChangeBiology.12:2115–2135.

Sun,G.;Alstad,K.;Chen,J.[andothers].2011.Ageneralpredictivemodelforestimatingmonthlyecosystemevapotranspiration.Ecohydrology.4(2):245-255.

Sun,G.;McNulty,S.G.;Lu,J.[andothers].2005.RegionalannualwateryieldfromforestlandsanditsresponsetopotentialdeforestationacrosstheSoutheasternUnitedStates.JournalofHydrology.308:258–268.

Sun,G.;McNulty,S.G.;MooreMyers,J.;Cohen,E.C.2008.ImpactsofmultiplestressesonwaterdemandandsupplyacrosstheSoutheasternUnitedStates.JournalofAmericanWaterResourcesAssociation.44(6):1441–1457.

Sun,G.,Noormets,A.;Gavazzi,M.J.[andothers].2010.EnergyandwaterbalanceoftwocontrastingloblollypineplantationsonthelowerCoastalPlainofNorthCarolina,USA.ForestEcologyandManagement.259:1299-1310.

Sun,G.;Riedel,M.;Jackson,R.2004.InfluencesofmanagementofSouthernforestsonwaterquantityandquality.In:Rauscher,H.M.;Johnsen,K.,eds.SouthernForestSciences:past,current,andfuture.Gen.Tech.RepSRS-75.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation.394p.Chapter3.

Sutherland,A.B.;Meyer,J.L.;Gardiner,E.P.2002.EffectsoflandcoveronsedimentregimeandfishassemblagestructureinfourSouthernAppalachianstreams.FreshwaterBiology.47:1791–1805.

Swank,W.T.;Douglass,J.E.1974.Streamflowgreatlyreducedbyconvertingdeciduoushardwoodstandstopine.Science.185:857–859.

Swank,W.T.;Douglass,J.E.1977.NutrientbudgetsforundisturbedandmanipulatedhardwoodforestecosystemsinthemountainsofNorthCarolina.In:Correll,D.L.,ed.WatershedresearchinEasternNorthAmerica.Edgewater,MD:SmithsonianInstitute:343-362.Vol.1.

Swift,L.W.,Jr.1988.Forestaccessroads:design,maintenance,andsoilloss.In:Swank,W.T.;Crossley,D.A.,Jr.,eds.Ecologicalstudies,foresthydrologyandecologyatCoweeta.NewYork:SpringerVerlag:313–324.Vol.66.

Thieler,E.R.;Hammar-Klose,E.S.2000.Nationalassessmentofcoastalvulnerabilitytofuturesea-levelrise:preliminaryresultsfortheU.S.GulfofMexicoCoast.Open-FileReport00-179,1sheet.U.S.GeologicalSurvey.

Thomson,A.M.;Brown,R.A.;Rosenberg,N.J.[andothers].2003.SimulatedimpactsofElNiño/southernoscillationonUnitedStateswaterresources.JournaloftheAmericanWaterResourcesAssociation.39:137–148.

Titus,J.G.;Richman,C.2001.Mapsoflandsvulnerabletosealevelrise:modeledelevationsalongtheU.S.Atlanticandgulfcoasts.ClimateResearch.18(2):205–228.

Tomer,M.D.;Dosskey,M.G.;Burkart,M.R.[andothers].2005.Placementofriparianforestbufferstoimprovewaterquality.[CD-ROM].In:Brooks,K.N.;Folliot,P.F.,eds.Movingagroforestryintothemainstream.Proceedingsofthe9thNorthAmericaagroforestryconference.St.Paul,MN:UniversityofMinnesota,DepartmentofForestResources.

Trimble,S.W.2008.Man-inducedsoilerosiononthesouthernPiedmont.Ankey,IA:SoilandWaterConservationSociety.80p.

Tufford,D.L.;Samarghitan,C.L.;McKellar,H.N.,Jr.[andothers].2003.Impactsofurbanizationonnutrientconcentrationsinsmallsoutheasterncoastalstream.JournaloftheAmericanWaterResourcesAssociation.39(2):301–312.

Ursic,S.J.1986.SedimentandforestrypracticesintheSouth.In:Proceedings,fourthFederalinteragencysedimentationconference.Washington,DC:U.S.GovernmentPrintingOffice:28–37.Vol.1.

U.S.Census.2001.Census2000summaryfile1UnitedStates,productIDV1–D00–S1S1–08–US1.http://www.census.gov/geo/www/gazetteer/places2k.html.[Dateaccessed:October28,2010].

U.S.DepartmentofAgriculture(USDA),NationalAgroforestryCenter.2008.Workingtreesforwaterquality.http://www.unl.edu/nac/workingtrees.htm.[Dateaccessed:June18,2010].

U.S.DepartmentofAgriculture(USDA),NaturalResourceConservationService.2009.Distributionmapsofdominantsoilorders.http://soils.usda.gov/technical/classification/orders/ultisols.html.[Dateaccessed:June15,2009].

Utz,R.M.;Hilderbrand,R.H.;Boward,D.M.2009.Identifyingregionaldifferencesinthresholdresponsesofaquaticinvertebratestolandcovergradients.EcologicalIndicators.9:556–567.

Vellidis,G.1999.WaterqualityfunctionofriparianecosystemsinGeorgiaIn:Hatcher,K.J.,ed.ProceedingsoftheGeorgiawaterresourcesconference.Athens,GA:TheUniversityofGeorgia,InstituteofEcology:207-210.

Vicars-Groening,J.;Williams,H.F.L.2007.ImpactofurbanizationonstormresponseofWhiteRockCreek,Dallas,TX.EnvironmentalGeology.51:1263–1269.

Vose,J.M.;Allen,H.L.1988.Leafarea,stemwoodgrowth,andnutritionrelationshipsinloblollypine.ForestScience.34(3):547–563.

Vose,J.M.;Sun,G.;Ford,C.R.[andothers].2011.Forestecohydrologicalresearchinthe21stcentury:Whatarethecriticalneeds?Ecohydrology.4(2):146-158.

Wahl,M.H.;McKellar,H.N.;Williams,T.M.1997.Patternsofnutrientloadinginforestedandurbanizedcoastalstreams.JournalofExperimentalMarineBiologyandEcology.213:111–131.

Walbridge,M.R.1993.FunctionsandvaluesofforestedwetlandsintheSouthernUnitedStates.JournalofForestry.91(5):15–19.

339chAPTeR 13. Forests and Water

Wallace,J.B.;Webster,J.R.;Lowe,R.L.1992.High-gradientstreamsoftheAppalachians.In:Hackney,C.T.;Adams,S.M.;Martin,W.A.,eds.BiodiversityoftheSoutheasternUnitedStates:aquaticcommunities.NewYork:JohnWiley:133-192.

Walsh,C.J.;Roy,A.H.;Feminella,J.W.[andothers].2005.Theurbanstreamsyndrome:currentknowledgeandthesearchforacure.JournaloftheNorthAmericanBenthologicalSociety.24:706–723.

Walters,D.M.;Leigh,D.S.;Bearden,A.B.2003.Urbanization,sedimentation,andthehomogenizationoffishassemblagesintheEtowahRiverbasin,USA.Hydrobiologia.494:5–10.

Wang,L.;Lyons,J.;Kanehl,P.;Bannerman,R.2001.Impactsofurbanizationonstreamhabitatandfishacrossmultiplespatialscales.EnvironmentalManagement.28:255–266.

Weaver,L.A.;Garman,G.C.1994.Urbanizationofawatershedandhistoricalchangesinastreamfishassemblage.TransactionsoftheAmericanFisheriesSociety.123:162–172.

Weston,N.B.;Hollibaugh,J.T.;Joyce,S.B.2009.Populationgrowthawayfromthecoastalzone:thirtyyearsoflandusechangeandnutrientexportintheAltamahaRiver,GA.ScienceoftheTotalEnvironment.407(10):3347–3356.

WorldWildlifeFund.2010.U.S.Southeastriversandstreams:safeguardingAmerica’srichestsourceoffreshwater.http://wwf.panda.org/what_we_do/where_we_work/southeastern_rivers/.[Dateaccessed:June18,2010].

Wullschleger,S.D.;Hanson,P.J.;Todd,D.E.2001.Transpirationfromamulti-speciesdeciduousforestasestimatedbyxylemsapflowtechniques.ForestEcologyandManagement.143:205–213.

Recommended