Carl Trudel, Literature Meeting Wednesday, April 11 th 2012

Preview:

Citation preview

Carl Trudel, Literature MeetingWednesday, April 11th 2012

Fe SeN

O

2

Pd SePhPhSe

Cl

Singh, F. V.; Wirth, T. In Organoselenium Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA, 2012, p 321-360.

Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

2

About this presentation

3

About Me

Presentation ScheduleSome selenium facts

Stoichiometric reactionsSelenium as a catalyst

CarbonylationOxidation (B.-V., epoxidation, selenylation-

deselenylation, alkyne, allylic, alcohol, imine, aniline...)

HalobromationGPx like activityAlkylation

Selenium as a ligand forCopperPalladium

4

Fun FactsDiscovered by J. J. Berzelius in 1817.

Selenium => Selene (moon)Chalcogen (O, S, Te)Among the 25 least common elements

0.05 – 0.09 ppm in the earth crustRecommended daily intake: 55µg (max

400µg/day)>1000µg/day => intoxicationsBrazil nuts, fishes and seafood (oyster and

tuna)...North American cereals (Beer!)

5

Berzelius, J. J. Afhandl. Fys. Kemi Mineralogi. 1818, 42.Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 285-302.http://www.passeportsante.net/fr/Solutions/PlantesSupplements/Fiche.aspx?doc=selenium_ps [April 2012]

Other Facts and NomenclatureUsed in everyday

applications Glass-making, electronics,

printers, solar cellsGlutathione peroxidase

enzymes and selenoproteinesAntioxidants, antitumor,

antimicrobial, antiviral

Se(s) 44.84 $/mol SeO2 54.59 $/molPh2Se 4 768.33 $/mol (PhSe)2 3 970,29 $/mol[mCPBA 120.11 $/mol]

6

Selenols RSeH

Selenides RSeR'

Diselenides RSeSeR'

Selenyl halides RSeX

Selenoxides RSe(O)R'

Selenonium/ate RR'R''Se+/-

Selenones RSe(O)2R'

Selenones RSe(O)2R'

Selenenic acid RSeOH

Seleninic acid RSe(O)OH

Perseleninic acid RSe(O)OOH

www. sigmaaldrich.com [april 2012]

Me3Si

Se2

NMe2

Soichiometric Selenium Chemistry

7

Br 1) Mg, Et2O

2) Se,

Se

3) Br2

2

64 - 70%

Reich, H. J.; Cohen, M. L.; Clark, P. S. Org. Synth. 1988, 50-9, 533-537.

Santi, C.; Wirth, T. Tetrahedron: Asymm. 1999, 10, 1019-1023.

Thompson, D. P.; Boudjouk, P. J. Org. Chem. 1988, 53, 2109-2112.

M(S) + Se(S) MSeSeMNaphtalene (cat)

THF

Carbonylation of aminoalcohols

8

1st Selenium Catalyzed Reaction

R'' XH

R NR'HR

Se (5 mol%)

DMF (1.4 M)

Et3N (1 equiv)

O2/CO (15 %V/V)R'' X

H

R NR

O

R'

X = O, S 64 - 99%

Sonoda, N.; Yamamoto, G.; Natsukawa, K.; Kondo, K.; Murai, S. Tetrahedron Lett. 1975, 16, 1969-1972.

HONH2

Se + Et3N

HSe- Et3NH+½ O2

H2O

HONH

CO +

Se-

O

Et3NH+

NH

O-Se

HO

Et3NH+

ONH

O

Perseleninic acid

Hydroxy Perhydroxy Selenane

9

Selenium Based Oxygen Transfer Reagents

PhSe

SePh 3 H2O2

2 H2O

PhSe

OH

O2

3 H2O2

PhSe

OOH

O2 + 2 H2O

PhSe

PhPh

SePh

O

PhSe

Ph

[O] H2O HOOH

PhSe

Ph

H2O2HO

OOH+ H2O

ClCl

NO

SO2Ph ArSe+

R

O-

Up to 95% ee

Up to 90% yld.

Davis, F. A.; Reddy, R. T. J. Org. Chem. 1992, 57, 2599-2606.

ArSe+

R

O- ArSe

OH

ROH

ArSe+

O-

RH2O H2O

10

Baeyer-Villiger Reaction

Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

O

O

O

H

Ar

R1 R2

O

Ar O

O

O R2

OH

R1

R1 O

O

R2

Ar OH

O+

O

SeO

O

H

Ar

R1 R2

O

ArSe

O

O

O R2

OH

R1

R1 O

O

R2

ArSe

OH

O+

11

Baeyer-Villiger Reaction, Perseleninic Acids

Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

PhSe

SePh 3 H2O2

2 H2O

PhSe

OH

O2

3 H2O2

PhSe

OOH

O2 + 2 H2O

12

Catalytic Baeyer-Villiger Reaction

Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

ArSe

OH

O

O

SeO

O

H

Ar

H2O2

H2O

R1 R2

O

ArSe

O

O

O R2

OH

R1

R1 O

O

R2

13

Catalytic Baeyer-Villiger Reaction

ten Brink, G.-J.; Vis, J.-M.; Arends, I. W. C. E.; Sheldon, R. A. J. Org. Chem. 2001, 66, 2429.

ArSe

O

O

O R2

O

R1

H

2O Se

(1 mol%)

Ar

60% H2O2 (2 equiv)CF3CH2OH (1M)

20 °C, 4 h

O

O

2

21%

Se

CF3

2

62%

Se

CF3

F3C 2

45%

SeF3C 2

40%

Se

F3C

91%95% 87% 81%

Conversion

Selectivity

2

19%

Se

NO2

2

37%

Se 2

31%

SeO2N 2

30%

Se

O2N

95%75% 93% 90%

C3° > C2° > Bn > Ar/H* > C1° > Me

CF3CH2OH, 20 °CHydrolysis might be an issueImportant substituent effect 14

Catalytic Baeyer-Villiger Reaction

ten Brink, G.-J.; Vis, J.-M.; Arends, I. W. C. E.; Sheldon, R. A. J. Org. Chem. 2001, 66, 2429.

ArSe

OH

O

O

SeO

O

H

Ar

H2O2

H2O

R1 R2

O

ArSe

O

O

O R2

OH

R1

R1 O

O

R2

2Se

CF3

F3C

Pioneer work by Sharpless

15

Seleninic Acid Epoxidation

Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689-1697.

PhSe

OH

O

PhSe

2+ Ph

SeOHH2O + 3

DCM, MgSO4

OH

SePh

TBHP

(2 equiv)

OH

OH

O

OH

SePh

HO

H2O2

O

(10 mol% cat)

Pioneer work by Sharpless

16

Seleninic Acid Epoxidation

Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689-1697.

PhSe

OH

O

PhSe

2+ Ph

SeOHH2O + 3

DCM, MgSO4

OH

SePh

TBHP

(2 equiv)

OH

OH

O

OH

SePh

HO

SeOH

O

NO2O2N

OHO

OHO

+

3:2

+

~2:1

OH

O

OHO

DCM or trifluoroethanol

Recyclable perfluorinated solvent

30 % H2O2 causes emulsions

DihydroxylationNaOAc increase yields

17

Seleninic Acid Epoxidation

Betzemeier, B.; Lhermitte, F.; Knochel, P. Synlett 1999, 489. Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

C8F17 C8F17

Se nBu

R (5 mol%)

60% H2O2 (1.5 - 2 equiv)C8F7Br / Benzene

70 °C, 1 - 12 h

R

O

63 - 97 %

O

SeO

O

H

Ar

18

Seleninic Acid Dihydroxylation

Santoro, S.; Santi, C.; Sabatini, M.; Testaferri, L.; Tiecco, M. Adv. Synth. Catal. 2008, 350, 2881-2884.

Sheldon, R. A. et al. J. Chem. Soc., Perkin Trans. 1 2001, 224.

60% H2O2 (2 equiv)F3CCH2OH, NaOAc (0.2 mol%)

20 °C, 1 h

O(0.25 mol%)

SeOH

O

F3C

CF3

98%

6% H2O2 / MeCN23 °C, 24 h

(10 mol%)

Se

76%99:1 (syn:anti)

2

OH

OH

6% H2O2 / MeCN24 h, -10 °C

Se

92% ee

2

Ph

S

(0.5 equiv)

Ph OHOH

56%, 68:32 (syn:anti)

HO PhOH

+

19

Sequential Selenylation-Desenylation

Santi, C. Et al. Chem. Eur. J. 2002, i, 1118. Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.

OMe

S

Se2

R1

R2

R1

R2

(NH4)2S2O8

Nuc(NH4)2S2O8

Nuc

R3

R1

R2

R1

R2

R3

Nuc

SeAr*

Nuc

SeAr*

*

Ph3SnHAIBN

Toluene,

R1

R2 Nuc

Up to 98% ee

H2O2,MeOH

R1

R2 Nuc

Up to 96% ee

R3

20

Sequential Selenylation-Desenylation

Santi, C. Et al. Chem. Eur. J. 2002, i, 1118. Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.

OMe

S

Se2

R1 R2

*ArSe

2½ + ½ (NH4)2S2O8 *Ar SeOSO3-

Nuc

R1 R2

Se+

*ArNH4

+

R1 R2

Nuc

Se*Ar

(NH4)2S2O8

R1 R2

Nuc

21

Sequential Selenylation-Desenylation

Santi, C. Et al. Chem. Eur. J. 2002, i, 1118. Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.

CO2H -30 48 85 55O

O

CO2Me 20 68 98 68MeOHCO2Me

OMe

Ph CO2Me 20 48 98 78MeOHPh CO2Me

OMe

Ph CO2Me 20 96 98 82MeCN/H2OPh CO2Me

OMe

DCM

Starting alkene T (°C) Time (h) Yield (%) ee (%)Solvent

R2(2.5 mol%)

R1

OMe

S

Se2

(NH4)2S2O8R2R1

Nuc

Nuc

22

Alkyne Oxidation

Santoro, S.; Battistelli, B.; Gjoka, B.; Si, C.-w. S.; Testaferri, L.; Tiecco, M.; Santi, C. Synlett, 2010, 1402.

R2(Cat.)

R1

Se2

(NH4)2S2O8R2R1

H2O/MeCN

OH

R2 (Cat.)

R1

Se2

(NH4)2S2O8

H2O/MeCN

R2R1

O

O

23

Alkyne Oxidation

Santoro, S.; Battistelli, B.; Gjoka, B.; Si, C.-w. S.; Testaferri, L.; Tiecco, M.; Santi, C. Synlett, 2010, 1402.

R1

R2

PhSe

2½ + ½ (NH4)2S2O8 Ph SeOSO3H

R1 R2

O

Se+

Ph

H2O

R1 R2

O

H2O

R1 R2

OH

SePh

OH

R1 R2

O

SePh

(NH4)2S2O8

OSO3-

R1 R2

O

O

24

Alkyne Oxidation

Santoro, S.; Battistelli, B.; Gjoka, B.; Si, C.-w. S.; Testaferri, L.; Tiecco, M.; Santi, C. Synlett, 2010, 1402.

R2(10 mol%)

R1

Se2

(NH4)2S2O8 (3 equiv)R2

R1

H2O/MeCN

O

O

60 °C, 24 - 72 h

MePh

O

O

75%

nPrPh

O

O

77%

Ph

O

O

59%

PhPh

O

O

67%

nPrnPr

O

O

67%

MenOct

O

O

57%

OHAr

O

OR

55 - 65%

ROH / DCM

SiO2

Ar

O

O

25

Alcohol Oxidation

van der Toorn, J. C.; Kemperman, G.; Sheldon, R. A.; Arends, I. W. C. E. J. Org.Chem. 2009, 74, 3085.

PhSe

O

O

SePh

O

PhSe

SePh + 3 TBHP

PhSe

OH

O

PhSe

O

O H

R

R

O

PhSeOH

TBHP

tBuOH+

H2OR

OH

SeO

O

Se

O

R

OH

PhSe

OH

O

SeO

O H

R

R

O+ PhSeOH

Excess of TBHP is to be avoided

Presence of water decrease the selectivity

Preactivation of the catalyst shortens reaction time

26

Alcohol Oxidation

van der Toorn, J. C.; Kemperman, G.; Sheldon, R. A.; Arends, I. W. C. E. J. Org.Chem. 2009, 74, 3085.

27

Alcohol Oxidation

van der Toorn, J. C.; Kemperman, G.; Sheldon, R. A.; Arends, I. W. C. E. J. Org.Chem. 2009, 74, 3085.

PhSe

O

O

SePh

O

PhSe

SePh + 3 TBHP

PhSe

OH

O

PhSe

O

O H

R

R

O

PhSeOH

TBHP

tBuOH+

H2OR

OH

SeO

O

Se

O

R

OH

PhSe

OH

O

SeO

O H

R

R

O+ PhSeOH

28

Alcohol Oxidation

Ehara, H.; Noguchi, M.; Sayama, S.; Onami, T. J. Chem. Soc., Perkin Trans. 1 2000, 1429.

Se2

N

R1 R2

OH

SO

ONClNa

Cl

Se

N

O

N SO2 Ar

R2

H

R1

Se

N

HN

O2S Ar

R1 R2

O

SO

ONClNa

Cl

Se

N

HNN SO2 Ar

O2S Ar

O

nHex

99%

O

Ph

99%

O

92%

O

8

24%

29

Allylic Oxidation of Alkene

Crich, D.; Zou, Y. Org. Lett. 2004, 6, 775-777.

R2(10 mol%)

R1Oxidant R2R1

Solvent,

RSe

OH

O

O SeO2H

F5

N SeO2H

O

Iodoxybenzene (H2O2 less selective)Electron-rich alkenes preferentiallyStable catalystDiselenide is recovered after

Na2S2O5 quench(86 - 92%)

30

Allylic Oxidation of Alkene

Crich, D.; Zou, Y. Org. Lett. 2004, 6, 775-777.

R2(10 mol%)

R1PhIO2 (3 equiv) R2R1

PhCF3,

O

SeO2H

F17

41 - 65 %

BzO

Me

BzO

Me

65 %O

Me

Me

H

H

H H

H H

R1 R2RF Se

R1 R2

R1 R2

Se

O

X

SeOHRF

X

HX

ORF

R1 R2

OSe

RF

PhIO2

R1 R2

O

31

Allylic Oxidation of Alkene

Crich, D.; Zou, Y. Org. Lett. 2004, 6, 775-777. Smith, M. B. Organic Synthesis; McGraw-Hill: Boston, MA, 2002; pp. 273-275.

R1 R2

OSe

RFX

H

Oxidation on the more highly substituted side

Endocyclic oxidation for 1-substituted cyclohexene

krel: CH2 > CH3 > CH

Follows Bredt’s rule

O

OAc

50%

Ph

O

63%OHC

62%

32

Imine Oxidation, Catalytic Hydroxylation

Brodsky, B. H.; Du Bois, J. J. Am. Chem. Soc. 2005, 127, 15391.

Cl

NSO2

O

F3C

Cl

NSO2

O

F3C O

Sred

SOox

OH

H

63% 36%

PivOMe

OH

43%

Me

BzO

OHMe

OH

80%

F3C

F3C

SeO

O OH

F3C

F3C

SeO

OH

H2O2

H2O

33

Aniline Oxidation

Priewisch, B.; Rück-Braun, K. J. Org. Chem. 2005, 70, 2350-2352.Zhao, D.; Johansson, M.; Bäckvall, J.-E. Eur. J. Org. Chem. 2007, 4431.

Ar NH2

[O]Ar NHOH

[O]Ar NO

[O]

Ar NN Ar

Ar N+N Ar

O-

Ar NO2

Ar N+

N+ Ar

O-

-O

R

NH2 PhSe

2

(5 mol%)

35% H2O2 (2.2 equiv)CHCl3, r.t., 2 h

R

N

O

75 - 95 %6:1 - >30:1 selectivity

(1.2 - 2 equiv)

35% H2O2 (2.2 equiv)CHCl3, r.t., 2 h

R

N

45 - 72 %1:1 - >99:1 isomer ratio

R3

R2R1

OR2

R3

R1

Br2, Br3+, HOBr

Seleninic acid electron rich reacts faster

34

Oxidation of Bromide Salts

Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

Br + H2O2 Br +

Br +

2 OH

H2O2 Br + O2 + 2 H

2 H2O2 O2 + 2 H2O

Unknown brominating speciesElectron donating group acceleration

35

Oxidation of Bromide Salts, Seleninic Acids

Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

O

SeO

O

H

Ar

Br

Br

O

SeOAr

OBr

H

O

SeOAr

OH

Br

HOBr

O

SeO

BrAr

36

Oxidation of Bromide Salts, Selenoxide

Goodman, M. A.; Detty, M. R. Organomet. 2004, 23, 3016.

RSe+

O-

R'

RSe

OH

R'

OH

RSe+

OH

R'

H2O2

RSe

OH

R'

OOHSe

NMe2

O

Ph

RSe+

O-

R'

H2O2 +

RSe

OH

R'

OOH

RSe

OH

R'

OBr

Br-

OH-

Br-OH-Br2 +

Br-HOBr+

OH-

37

Oxidation of Bromide Salts, Seleninic Acid

Drake, M. D.; Bateman, M. A.; Detty, M. R. Organomet. 2003, 22, 4158.

R

OH

O

nO

Br

O

n

R

OHn O

Brn

R

R

SubstratePhSeO2H (10 mol%)

Et2O / 1M NaBr/H2O2

pH 6

Brominated species

EDG

Br

EDG

R

OH

O

n

R

OHn

Br

Br

Br

Br

EDG

Br

Gluthathione peroxidase (GPx)Selenoenzyme (L-

selenocysteine)Reactive oxygen speciesNeurodegenerative disease

(Parkinson, Alzheimer), physiological and inflammatory processes.

Chalcogen-based catalytic antioxidants

38

Disulfide Formation

Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

HSeCO2H

NH2

L-Selenocysteine

HO NH

O OHN

O

OH

OSH

NH2

Glutathione (SGH)

39

GPx Activity

Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

HSeCO2H

NH2

L-Selenocysteine

HO NH

O OHN

O

OH

OSH

NH2

Glutathione (SGH)

GPx SeH

ROOH

ROH

GPx SeOH

GSHH2O

GPx SeSG

GSH

GSSG

40

Catlytic Reduction of Enones

Tian, F.; Lu, S. Synlett 2004, 1953.

R

O

Ar R'SeH R

O

Ar

SeR'

R

O

Ar

Se

CO+

H2O

CO2

H2Se R

O

Ar

R

O

Ar

SeH

R

O

Ar

R

O

Ar

Se (20 mol%)CO (0.1 mPa)

H2O/DMF90 °C, 2 - 4 h

76 - 99 %

41

Catalytic Disulfide Formation

Alberto, E. E.; Braga, A. L.; Woollins, J. D.; Laitinen, R. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg, 2011, p 251-283.

RSeH

RSeOH Se

RSeO2H

SR'

R

H2O

H2O2

H2O

H2O2

R'SH H2O

R'SH

R'S

2

R'SH

R'S

2

3

+ 2 H2O

SeNH

O

Se

HO

Se

HOOH

OSe

O

Diethyl Zinc Addition to Aldehydes

42

Santi, C.; Wirth, T. Tetrahedron: Asym. 1999, 10, 1019-1023. Wirth, T. Tetrahedron Lett. 1995, 36, 7849-7852.

H

O

+ Et2ZnCatalyst

OH

*

Se

Me

N

2

(S)-ROH 91%98%ee

Se

Me

N

2

(S)-ROH 57%91%ee

Se

Me

N

2

(S)-ROH 70%91%ee

Se

Me

N

2

(S)-ROH 78%41%ee

O2N

Se

N

2

(S)-ROH 95%91%ee

Se

Me

N

2

(S)-ROH 98%96%ee

TMS

Diethyl Zinc Addition to Aldehydes

43

Santi, C.; Wirth, T. Tetrahedron: Asym. 1999, 10, 1019-1023. Wirth, T. Tetrahedron Lett. 1995, 36, 7849-7852.

H

O

+ Et2ZnCatalyst

OH

*

Se

Me

N

2

(S)-ROH 91%98%ee

Se

Me

N

2

(S)-ROH 57%91%ee

Se

Me

N

2

(S)-ROH 70%91%ee

Se

N

2

(S)-ROH 95%91%ee

Se

Me

N

2

(S)-ROH 98%96%ee

TMS

OH

OMe

93%, 95%ee

80%, 95%ee

OH

93%, >99%ee

75%, >99%ee

MeO

N

OH

85%, 91%ee

78%, 98%ee

Diethyl Zinc Addition to Aldehydes

44

Braga, A. L.; Galetto, F. Z.; Rodrigues, O. E. D.; Silveira, C. C.; Paixão, M. W. Chirality 2008, 20, 839-845.

H

O

+ Et2ZnCatalyst

OH

*

RSe

NHBoc

2

(R)-ROH 70 - 91%

up to 95%ee

RS

NHBoc

2

(R)-ROH 70 - 90%

up to 95%ee

OH

63%, >99%ee

51%, 70%ee

3

OH

56%, 45%ee

54%, >99%ee

7

Ph

O

Ph

O

Ph Ph

O

OMe

Ph

O

Br

O

Ph

MeO

O

Ph

Br

99%, 96% ee 97%, 95% ee

98%, 96% ee 87%, 97% ee98%, 96% ee 95%, 96% ee

Diethyl Zinc Addition to Enones

45

Shi, M.; Wang, C.-J.; Zhang, W. Chem. Eur. J. 2004, 10, 5507-5516.

NH

NH

Et

PX

PhPh

X = Se, S

1) Cu(MeCN)4BF4 (3 mol%), Ligand (6 mol%)

2) Et2Zn, PhMe, 10 - 20 min

O O

O

60%, 91% ee

O

95%, 90% ee

O

94%, 93% ee

Diethyl Zinc Addition to Enones

46

Shi, M.; Wang, C.-J.; Zhang, W. Chem. Eur. J. 2004, 10, 5507-5516.

NH

NH

Et

PX

PhPh

X = Se, S

O

Cu

Se

R

PPh2

N

NZn

R

* H

Et

LCu

X

L*

LCu

R

L*

LCu

R

L*

O

ZnXR

+ RZnX

R2Zn

ORZn

R

Malonate Alkylation

47

Braga, A. L.; Galetto, F. Z.; Rodrigues, O. E. D.; Silveira, C. C.; Paixão, M. W. Chirality 2008, 20, 839.

O N

R

Ar

TMsCl, THF, 30 min

R'SeSeR'/NaBH4, THF/EtOHReflux, 24 h

SeR

HN

R'

O

Ar

Y

HN

Ph

O

Ph

Pd(3-C3H5)Cl2 (2.5 mol%)Ligand (5 mol%)

BSA, KOAcDCM, 24 h, r.t.

Y = SeS .

Ph Ph

Ph Ph

CO2R'R'O2CR

Malonate Alkylation

48

Braga, A. L.; Galetto, F. Z.; Rodrigues, O. E. D.; Silveira, C. C.; Paixão, M. W. Chirality 2008, 20, 839.

Y

HN

Ph

O

Ph

Pd(3-C3H5)Cl2 (2.5 mol%)Ligand (5 mol%)

BSA, KOAcDCM, 24 h, r.t.

Y = SeS .

Ph Ph

Ph Ph

CO2R'R'O2CR

Se

PdN

Ph

PhO

Ph

Ph

Nuc

Se

PdN

Ph

PhONuc Ph

Ph

Ph Ph

CO2MeMeO2C

SeS .

97%, 98% ee94%, 86% ee

Ph Ph

CO2EtEtO2C

SeS .

95%, 93% ee89%, 84% ee

Ph Ph

CO2EtEtO2C

SeS .

83%, 69% ee61%, 48% ee

Ph Ph

CO2EtEtO2C

SeS .

89%, 82% ee68%, 66% ee

Et Ph

ConclusionSelenium compounds are very versatile catalystsDifferent oxidation state allows completely

different reaction pathwaysLittle work as been focusing on their strong

electron donating properties as a ligandLittle success in achieving stereoselective

reactions with catalytic amount of enantioenriched organoselenium

Developpement towards its industrial use rather than fine chemistry

49

Recommended