BJT (Bipolar Junction Transistor) - maulana.lecture.ub.ac.id · electron emiter menyebar ke basis...

Preview:

Citation preview

BJT

(Bipolar Junction Transistor)

Elektronika(TKE 4012)

Eka Maulana

maulana.lecture.ub.ac.id

Pokok Bahasan

• Dasar Transistor

• Arus transistor

• Koneksi rangkaian

• Kurva transistor

• Pendekatan transistor

• Datasheet

• Load Line

• Titik Kerja

BJT (Bipolar Junction Transistor)

KOLEKTOR

(medium doping)

BASIS

(light doping)

EMITOR

(heavy doping)

N

N

BJT terdiri dari 3 bagian (dopping)

BJT (Bipolar Junction Transistor)

P

N

P

N

VCE

VCC

RC

RB

VBB

VBE

Saat transistor NPN dibias maju,

electron emiter menyebar ke basis dan kolektor

BJT (Bipolar Junction Transistor)

Aliran Arus Aliran Elektron

IC

IB

IE

IC

IB

IE

IE = IC + IB IC @ IE IB << IC

adc = IC

IE

bdc = IC

IB

BJT (Bipolar Junction Transistor)

VCE

VCC

RC

RB

VBB

VBE

Common Emitor memiliki dua loop:Loop Basis dan Loop Kolektor

BJT (Bipolar Junction Transistor)

Notasi Subscript

• Ketika notasi subscript sama, maka

menyatakan sumber tegangan (VCC).

• Ketika notasi subscript sama,

menyatakan tegangan dua titik (VCE).

• Notasi single digunakan untuk

menyatakan tegangan node dengan

ground sebagai referensi (VC).

BJT (Bipolar Junction Transistor)

VCE

VCC

RC

RB

VBB

VBE

Rangkaian pada BASIS biasanya dianalisis

dengan pendekatan yang sama seperti digunakan pada dioda.

IB =VBB - VBE

RB

BJT (Bipolar Junction Transistor)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

VCE (Volts)

IC (mA)

Grafik IC versus VCE

20 mA

0 mA

100 mA

80 mA

60 mA

40 mA

(nilai IB baru merepresentasikan kurva baru)

BJT (Bipolar Junction Transistor)

Daerah Kerja Transistor

• Cutoff - digunakan untuk aplikasi switching

• Active - digunakan untuk penguatan linear

• Saturation - digunakan untuk aplikasi switching

• Breakdown - dapat merusak transistor

BJT (Bipolar Junction Transistor)

Pendekatan Rangkaian Transistor

• First: dioda ideal pada basis-emitor dan

menggunakan bIB untuk menentukan IC.

• Second: menggunakan VBE dan bIB untuk

menentukan IC.

• Third (and higher): menggunakan

perhitungan resistansi bulk dan pengaruh

lain. Biasanya diselesaikan dengan simulasi

komputer.

BJT (Bipolar Junction Transistor)

bdcIB VCEVBE = 0.7 V

Pendekatan Kedua:

BJT (Bipolar Junction Transistor)

VCC

RC

RB

VBB

VBE = 0.7 V

IB =VBB - VBE

RB

IB =5 V - 0.7 V

100 kW

5 V

100 kW

= 43 mA

BJT (Bipolar Junction Transistor)

VCC

RC

RB

VBB 5 V

100 kW

IB = 43 mA

bdc = 100

IC = bdc IB

IC = 100 x 43 mA = 4.3 mA

BJT (Bipolar Junction Transistor)

VCC

RC

RB

VBB 5 V

100 kW

IB = 43 mA

IC = 4.3 mA

1 kW

12 V

VRC= IC x RC

VRC= 4.3 mA x 1 kW = 4.3 V

BJT (Bipolar Junction Transistor)

VCC

RC

RB

VBB 5 V

100 kW

IB = 43 mA

IC = 4.3 mA

1 kW

12 V

VCE = VCC - VRC

VCE

VCE = 12 V - 4.3 V = 7.7 V

BJT (Bipolar Junction Transistor)

Typical Breakdown Ratings

• VCBO = 60 V

• VCEO = 40 V

• VEBO = 6 V

• Note: these are reverse breakdown ratings

BJT (Bipolar Junction Transistor)

0

2

4

6

8

10

12

14

VCE (Volts)

IC (mA)

50

Grafik breakdown Colector

BJT (Bipolar Junction Transistor)

Typical Maximum Ratings

• IC = 200 mA dc

• PD = 250 mW (for TA = 60 oC)

• PD = 350 mW (for TA = 25 oC)

• PD = 1 W (for TC = 60 oC)

BJT (Bipolar Junction Transistor)

Pembiasan BJT

(Bipolar Junction Transistor)

Elektronika(TKE 4012)

Eka Maulana

maulana.lecture.ub.ac.id

VCC

RC

RB

VBB 12 V

1 kW

12 V

VCE = VCC - ICRC

VCE

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

VCE in Volts

IC in mA

20 mA

0 mA

100 mA

80 mA

60 mA

40 mA

IC =VCC - VCE

RC

Persaman ini menghasilkan load line.

VCC

RC

RB

VBB 12 V

1 kW

12 V

Mental

short

IC = 12 V

1 kW

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

VCE in Volts

IC in mA

20 mA

0 mA

100 mA

80 mA

60 mA

40 mA

IC = 12 V

1 kW= 12 mA Arus satutasi

VCC

RC

RB

VBB 12 V

1 kW

12 V

Mental

open

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

VCE in Volts

IC in mA

20 mA

0 mA

100 mA

80 mA

60 mA

40 mA

VCE(cutoff) = VCC

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

VCE in Volts

IC in mA

20 mA

0 mA

100 mA

80 mA

60 mA

40 mA

load line baru dengan kemiringan yang sama

VCC

RC

RB

VBB 12 V

1 kW

12 V

Ubah RC:

VCE

750 W

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

VCE in Volts

IC in mA

20 mA

0 mA

100 mA

80 mA

60 mA

40 mA

Smaller RC menghasilkan steeper slope

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

VCE in Volts

IC in mA

20 mA

0 mA

100 mA

80 mA

60 mA

40 mA

Rangkain dapat dioperasikan pada setiap titik pada load line

VCC

RC

RB = 283 kW

VBB 12 V

1 kW

12 V

IB =VBB - VBE

RB

The operating point is determined by the base current.

IB =12 V - 0.7 V

283 kW= 40 mA

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

VCE in Volts

IC in mA

20 mA

0 mA

100 mA

80 mA

60 mA

40 mA

The operating point is called the quiescent point.

Q

This Q point is in the linear region.

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

VCE in Volts

IC in mA

20 mA

0 mA

100 mA

80 mA

60 mA

40 mA

Saturation and cutoff are non-linear operating points.

These Q points are used in switching applications.

Recognizing saturation

• Assume linear operation.

• Perform calculations for currents and

voltages.

• An impossible result means the

assumption is false.

• An impossible result indicates saturation.

Base bias

• The base current is established by VBB

and RB.

• The collector current is b times larger in

linear circuits.

• The transistor current gain will have a

large effect on the operating point.

• Transistor current gain is unpredictable.

VCC

RC

REVBB 5 V

1 kW

15 V

1 kW

2.2 kW

IE =VBB - VBE

RE

= 1.95 mA

VC = 15 V - (1.95 mA)(1 kW) = 13.1 V

Emitter bias:

VCE = 13.1 V - 4.3 V = 8.8 V

IC @ IE

Recommended