Au collisions at RHIC - Brookhaven National Laboratory...in Au + Au collisions at RHIC Ning Yu...

Preview:

Citation preview

Beam energy dependence of 𝑑 and οΏ½οΏ½ production in Au + Au collisions at RHIC

Ning YuCentral China Normal Universityfor the STAR Collaboration

2017/2/7 17:10-17:30

Outline

✯ Introduction

✯ STAR Experiment

✯ Results and Discussions

✯ Summary

Ning Yu, Quark Matter 2017@Chicago 1/20

2017/2/7 17:10-17:30

QCD Phase DiagramLHC,RHIC

Future FAIR Experiment

K. Fukushima and C. SasakiProg. Part. Nucl. Phys, 72, (2013) 99

✯ High temperature: QGP properties✯ High baryon density:

ΓΌ Critical point and phase boundaryΓΌ Possible new phase structure : quarkyonic matter

Phase transition

Correlations of nucleons

Light nuclei

Ning Yu, Quark Matter 2017@Chicago 2/20

2017/2/7 17:10-17:30

Light Nuclei Formation in HI Collisions✯ Light (anti)nuclei with small binding energy (πœ€), such as 𝑑 and οΏ½οΏ½ with binding

energy πœ€ = 2.2 MeV, are formed via final-state coalescence

𝐸(𝑑)𝑁(𝑑)𝑝(

= 𝐡( 𝐸-𝑑)𝑁-𝑑)𝑝-

.

𝐸/𝑑)𝑁/𝑑)𝑝/

(0.

β‰ˆ 𝐡( 𝐸-𝑑)𝑁-𝑑)𝑝-

(

, 𝑝(= 𝐴𝑝-

✯ In thermodynamics, 𝐡( is related to the nucleon freeze-out correlation volume 𝑉6or baryon density

𝐡( ∝ 𝑉680(, 𝐡9 =6πœ‹)𝑅/-π‘š>

π‘š-9𝑉6

, 𝑅/- =𝑁/𝑁-

✯ Light nuclei may serve as probes of space-momentum density and correlation of nucleons at freeze-out. We will focus on 𝑑 (οΏ½οΏ½) in this talk.

LΓ‘szlΓ³ P. Csernai, Joseph I. Kapusta Phys. Reps, 131,223(1986)B. Monreal, et. al. PRC60,031901(1999), PRC60,051902(1999)

Ning Yu, Quark Matter 2017@Chicago 3/20

2017/2/7 17:10-17:30

Energy Dependence of 𝑩𝑨Most Central

✯ The size of the fireball increase from low to high collision energy, 𝐡9 decrease with energy

✯ The behavior of 𝐡9 is different at high energy

✯ Is there any structure in the

energy dependence of π‘©πŸ, from high energy to low energy ?

✯ Is there any centrality dependence of π‘©πŸ?

✯ Is there any difference of π‘©πŸbetween deuteron and anti-

deuteron?PHENIX, PRL. 94, 122302 (2005).

Ning Yu, Quark Matter 2017@Chicago 4/20

1 10 100Collision Energy 𝒔𝑡𝑡� (GeV)

2017/2/7 17:10-17:30

RHIC Beam Energy Scan

𝒔𝐍𝐍� (GeV) 7.7 11.5 14.5 19.6 27 39 62.4 200Neve(M) 4 11 27 40 71 133 67 480𝝁𝑩(MeV) 420 315 260 205 155 115 72 20

✯ BES-I Au+Au collisions at 𝑠HHοΏ½ = 7.7, 11.5, 14.5, 19.6, 27, 39 and 62.4 GeVΓΌ Search for conjectured QCD critical

point ΓΌ Search for the first order phase

transitionΓΌ Search for the onset of key QGP

signatures

STAR Collaboration, arXiv:1007.2613

J. Cleymans, H. Oeschler, K. Redlich, and S. WheatonPRC 73,034905 (2006)

Ning Yu, Quark Matter 2017@Chicago 5/20

2017/2/7 17:10-17:30

Solenoidal Tracker At RHICTime Projection Chamber(TPCοΌ‰

ΓΌ Charged Particle Tracking

ΓΌ Momentum reconstruction

ΓΌ Particle identification from ionization

energy loss (dE/dx)

ΓΌ Pseudorapidity coverage |Ξ·| < 1.0

Time Of Flight (TOF)

ΓΌ Particle identification m2

ΓΌ Pseudorapidity coverage |Ξ·| < 0.9

Ning Yu, Quark Matter 2017@Chicago 6/20

2017/2/7 17:10-17:30

Particle Identification

Z (d) 0.4βˆ’ 0.3βˆ’ 0.2βˆ’ 0.1βˆ’ 0 0.1 0.2 0.3 0.4

Cou

nts

0

0.5

1

1.5

2

310Γ—

DATASign.+Backgr.Sign.Backgr.

deuteron 39 GeV 0-5% < 0.8 GeV/c

T0.6 < p

)4/c2 (GeV2m2.5 3 3.5 4 4.5

Cou

nts

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

310Γ—

DATASign.+Backgr.Sign.Backgr.

deuteron 39 GeV 0-5% < 2.8 GeV/c

T2.4 < p

𝑧> = log𝑑𝐸 𝑑π‘₯⁄𝑑𝐸 𝑑π‘₯⁄ >

OO

π‘š9 = 𝑝9𝑐9𝑑9

𝐿9 βˆ’ 1

BB : Bethe-BlochH. Bichsel, Nucl. Instrum. Meth. A 562, 154 (2006).

Ning Yu, Quark Matter 2017@Chicago 7/20

2017/2/7 17:10-17:30

Efficiency and Acceptance

πœ€UVW 𝑝X = π‘ŽZexp βˆ’π‘Ž8𝑝X

^_+ π‘π‘œπ‘™(2)

πœ€Ude 𝑝X = π‘ŽZexp βˆ’π‘Ž8𝑝X

^_

πœ€Ude 𝑝X =ThenumberofTOFMatchedTracks

ThenumberofTPCTracks

Ning Yu, Quark Matter 2017@Chicago 8/20

2017/2/7 17:10-17:30

Corrections✯ Energy Loss

✯ Background in 𝑑 analysis

𝑓 𝑝X = 𝐴 + 𝐡 1 +𝐢𝑝X9

{

- No centrality dependence of energy loss- Energy loss of 𝑑 and οΏ½οΏ½ are the same- The energy loss for all the collision energy are the

same except 14.5 GeV (different material budget)

Ning Yu, Quark Matter 2017@Chicago 9/20

2017/2/7 17:10-17:30

Deuteron Spectra✯ Mid-rapidity ( 𝑦 ≀ 0.3) transverse

momentum distribution of 𝑑 from

Au+Au Collision

✯ Dash line: blast-wave function fits1 2 3 4

5

4

3

2

1

111.5 GeV

1 2 3 4

5

4

3

2

1

114.5 GeV

1 2 3 4

6βˆ’10

5βˆ’10

4βˆ’10

3βˆ’10

2βˆ’10

1βˆ’10

1

19.6 GeV

1 2 3 4

6

5

4

3

2

1

1

27 GeV

1 2 3 4

6

5

4

3

2

1

1

39 GeV

1 2 3 4

6βˆ’

10

5βˆ’

10

4βˆ’10

3βˆ’

10

2βˆ’10

1βˆ’10 62.4 GeV

1 2 3 4

6

5

4

3

2

1 200 GeV

1 2 3 4

6

5

4

3

2

1βˆ’

4 2Γ— 0-10%

3 2Γ—10-20%

2 2Γ—20-40%

1 2Γ—40-60%

0 2Γ—60-80%

(GeV/c)T

Transverse Momentum p

Deuteron from Au+Au Collision

)2

/Ge

V2

dy)

(c

TN

/(d

p2

)dT

pΟ€

1/(

2

1 2 3 4

5βˆ’

10

4βˆ’10

3βˆ’

10

2βˆ’10

1βˆ’10

17.7 GeV

STAR Preliminary

d9π‘π‘šXπ‘‘π‘šX

∝ οΏ½ π‘Ÿdπ‘Ÿπ‘šX𝐼Z𝑝Xsinh𝜌

𝑇 𝐾8π‘šXcosh𝜌

𝑇

οΏ½

Z

Ning Yu, Quark Matter 2017@Chicago 10/20

2017/2/7 17:10-17:30

Anti-Deuteron Spectra

1 2 3 4

6

5

4

3

11.5 GeV

1 2 3 4

6

5

4

3

14.5 GeV

1 2 3 46βˆ’10

5βˆ’10

4βˆ’10

3βˆ’10

2βˆ’10 19.6 GeV

1 2 3 46

5

4

3

2

27 GeV

1 2 3 46

5

4

3

2

39 GeV

1 2 3 4

6βˆ’

10

5βˆ’

10

4βˆ’10

3βˆ’

10

2βˆ’10

1βˆ’10

62.4 GeV

1 2 3 4

6

5

4

3

2

1

200 GeV

1 2 3 4

6

5

4

3

2

1βˆ’

4 2Γ— 0-10%

3 2Γ—10-20%

2 2Γ—20-40%

1 2Γ—40-60%

0 2Γ—60-80%

(GeV/c)T

Transverse Momentum p

Anti-Deuteron from Au+Au Collision

)2

/Ge

V2

dy)

(c

TN

/(d

p2

)dT

pΟ€

1/(

2

1 2 3 4

6βˆ’

10

5βˆ’

10

4βˆ’10

3βˆ’

10

d9π‘π‘šXπ‘‘π‘šX

∝ οΏ½ π‘Ÿdπ‘Ÿπ‘šX𝐼Z𝑝Xsinh𝜌

𝑇 𝐾8π‘šXcosh𝜌

𝑇

οΏ½

Z

STAR Preliminary

✯ Mid-rapidity ( 𝑦 ≀ 0.3) transverse

momentum distribution of οΏ½οΏ½ from

Au+Au Collision

✯ Dash line: blast-wave function fits

Ning Yu, Quark Matter 2017@Chicago 11/20

2017/2/7 17:10-17:30

𝒑𝑻 and π‘»π’Œπ’Šπ’, 𝜷

⟩ Part

N⟨100 200 300

( G

eV/c

)⟩

T p⟨

1

1.5

219.6 GeV 27 GeV 39 GeV62.4 GeV 200 GeV

Au+Au Anti-Deuteron

⟩ Part

N⟨100 200 300

( G

eV/c

)⟩

T p⟨

1

1.5

27.7 GeV 11.5 GeV 14.5 GeV 19.6 GeV27 GeV 39 GeV 62.4 GeV 200 GeV

Au+Au Deuteron

STAR Preliminary STAR Preliminary

39 GeV 𝑑 οΏ½οΏ½ πœ‹, 𝐾, π‘βˆ—

Cent. π‘»π’Œπ’Šπ’(MeV) 𝜷(c) 𝑝X (GeV/c) 𝑝X (GeV/c) π‘»π’Œπ’Šπ’(MeV) 𝜷(c) 𝑝X (GeV/c)0-10% 99Β±12 0.45Β±0.02 1.35Β±0.09 1.39Β±0.09 118Β±11 0.48Β±0.04 0.85Β±0.0510-20% 110Β±14 0.43Β±0.02 1.32Β±0.09 1.35Β±0.05 120Β±11 0.46Β±0.03 0.83Β±0.0520-40% 135Β±23 0.39Β±0.02 1.23Β±0.08 1.23Β±0.08 126Β±11 0.41Β±0.03 0.79Β±0.05

✯ 𝒑𝑻 decrease fromcentral to peripheralcollision

✯ 𝒑𝑻 of 𝑑 and 𝑑 areconsistent within error

✯ B.W. can describe both𝑑 and πœ‹, 𝐾, 𝑝 withsimilar parameters

βˆ— STAR Collaboration, arXiv:1701.07065 (submitted to PRC)

Ning Yu, Quark Matter 2017@Chicago 12/20

2017/2/7 17:10-17:30

Integral Yield 𝒅𝑡 π’…π’šβ„

✯ 𝑑𝑁 𝑑 /𝑑𝑦 is smaller at higher energy: baryon stopping✯ 𝑑𝑁(𝑑)/𝑑𝑦 increases with increasing energy: baryon pair production✯ 𝑁���� scaled 𝑑𝑁/𝑑𝑦 for 𝑑 show weak centrality dependence, for 𝑑

increase slightly from peripheral to central collision

⟩ Part

N⟨100 200 300

]⟩ P

art

NβŸ¨Γ—

dN

/dy/[

0.5

6βˆ’10

5βˆ’10

4βˆ’10

3βˆ’10

11.5 GeV 14.5 GeV 19.6 GeV 27 GeV39 GeV 62.4 GeV 200 GeV

Au+Au Anti-Deuteron

⟩ Part

N⟨100 200 300

]⟩ P

art

NβŸ¨Γ—

dN

/dy/[

0.5

3βˆ’10

2βˆ’10

7.7 GeV 11.5 GeV 14.5 GeV 19.6 GeV

27 GeV 39 GeV 62.4 GeV 200 GeV

Au+Au Deuteron

STAR Preliminary STAR Preliminary

Ning Yu, Quark Matter 2017@Chicago 13/20

2017/2/7 17:10-17:30

Antiparticle to Particle Ratios

✯ 𝑁 οΏ½οΏ½ /𝑁 𝑑 ratio decreases as a function of collision centrality✯ 𝑁 οΏ½οΏ½ /𝑁 𝑑 ratio decreases with decreasing energy

⟩ Part N⟨100 200 300

)/N(d

)d

N(

0

0.2

0.4

0.6

0.8 200 GeV 2Γ—39 GeV

4Γ—19.6 GeV PHENIX 200 GeV

STAR Preliminary

PHENIX, PRL. 94, 122302 (2005).

Ning Yu, Quark Matter 2017@Chicago 14/20

2017/2/7 17:10-17:30

𝑡(𝒅)/𝑡(𝒑) Ratio vs. Energy

The lines are from thermal model predictionA. Andronic, P. Braun-Munzinger, J. Stachel, H. Stocker, PLB697 (2011)203

(GeV)NNs10 210 310

Parti

cle

Rat

io

4βˆ’10

3βˆ’10

2βˆ’10

1βˆ’10

1STAR 0-10% d/p

p/dSTAR 0-10% SIS d/pEOS802 d/pNA49 d/pPHENIX d/p

p/dPHENIX ALICE d/p

Thermal Prediction

5 MeVΒ±T = 163

✯ The N(𝑑)/𝑁(𝑝) ratios by thermal model prediction are consistentwith the data from SIS energies up to LHC

✯ A temperature of 𝑇 = 163 Β± 5 MeV can be extracted from 𝑁(𝑑)/𝑁(𝑝)and 𝑁(οΏ½οΏ½)/𝑁(οΏ½οΏ½)

𝑁(𝑑)𝑁(𝑝) ~

𝐾9 π‘š> 𝑇⁄𝐾9 π‘š- 𝑇⁄

𝑒��X

𝑁(οΏ½οΏ½)𝑁(οΏ½οΏ½) ~

𝐾9 π‘š> 𝑇⁄𝐾9 π‘š- 𝑇⁄

𝑒0οΏ½οΏ½X

STAR Preliminary

Ning Yu, Quark Matter 2017@Chicago 15/20

2017/2/7 17:10-17:30

𝒅/π’‘πŸ and 𝒅�/π’‘οΏ½πŸ Ratios✯ In thermal model with GCE (grand canonical

ensemble), 𝑑 𝑝9⁄ and οΏ½οΏ½ οΏ½οΏ½9⁄ should be the same if iso-spin effect can be neglected

πœ‡ π‘‡ =

12 ln

οΏ½οΏ½ οΏ½οΏ½9⁄𝑑 𝑝9⁄

✯ The πœ‡ /𝑇 can also be obtained by πœ‡ π‘‡ =

12 ln

πœ‹Β‘

πœ‹0

The results are close to zero implying smalliso-spin effect

10 210

2d/p

0.2

0.4

0.6

0.8

3βˆ’10Γ—

2d/p2

p/d

p err.

err.p

Au+Au 0-10%

(GeV)NNs10 210

/ T

QΒ΅ 0.5βˆ’

0

2BES d/p-

Ο€/+Ο€BES -

Ο€/+Ο€NA49 Initial Iso-spin

STAR Preliminary

NA49, PRC 94, 044906 (2016)

Ning Yu, Quark Matter 2017@Chicago 16/20

2017/2/7 17:10-17:30

π‘©πŸ v.s. π’Žπ‘» and Collision Centrality

✯ The values of 𝐡9 increase as a function of π‘šXand decrease with collision centrality : collective expansion

✯ 𝐡9 𝑑 are smaller than that of 𝐡9 𝑑 , antiβˆ’baryon freeze out at a larger source

𝐡9 = π‘Ž Β£ exp 𝑏 π‘šX βˆ’ π‘š

NA44, EPJ C. 23, 237 (2002)

)2 - m (GeV/cTm0.5 1 1.5

)3/c2

(GeV

2B

1

2

3

4

3βˆ’10Γ—

(d) 0-10%2B(d) 10-20%2B(d) 20-40%2B(d) 40-60%2B

)2 - m (GeV/cTm0.5 1 1.5

)3/c2

(GeV

2B

) 0-10%d(2B) 10-20%d(2B) 20-40%d(2B) 40-60%d(2B

Au+Au 39 GeV

STAR Preliminary

Ning Yu, Quark Matter 2017@Chicago 17/20

(GeV)NNs4 5 6 7 8 10 20 30 40 100 200

)3/c2

(GeV

2B

3βˆ’10

E864(d) Au+PbE866(d) Au+AuE877(d) Au+AuNA49(d) Pb+PbPHENIX(d) Au+Au

) Au+AudSTAR() Au+AudPHENIX(

/ A = 0.65 GeV/cT

pSTAR 0-10%(d) Au+Au

) Au+AudSTAR 0-10%(

Average of p+p and p+A

Central CollisionSTAR Preliminary

2017/2/7 17:10-17:30

Coalescence Parameters v.s. Collision Energy

✯ 𝐡9 decrease with collision energy. A minimum around sHH� = 20 GeV :change of EOS?!

✯ 𝐡9 𝑑 values are systematically lower than that of 𝐡9(𝑑) implying emitted source of anti-baryons is larger than those of baryons

arXiv:1410.2559

∝ βˆ†π‰ ∝ 𝒄𝒔

Ning Yu, Quark Matter 2017@Chicago 18/20

2017/2/7 17:10-17:30

Discussion✯ Is there any structure in energy

dependence of 𝐡9, from high

energy to low energy ? (BES: Yes)

✯ Is there any centrality dependence

of 𝐡9? (Yes)

✯ Is there any difference of 𝐡9between deuteron and anti-

deuteron? (Yes) (GeV)NNs4 5 6 7 8 10 20 30 40 100 200

)3/c2

(GeV

2B

3βˆ’10

E864(d) Au+PbE866(d) Au+AuE877(d) Au+AuNA49(d) Pb+PbPHENIX(d) Au+Au

) Au+AudSTAR() Au+AudPHENIX(

/ A = 0.65 GeV/cT

pSTAR 0-10%(d) Au+Au

) Au+AudSTAR 0-10%(

Average of p+p and p+A

Central CollisionSTAR Preliminary

Ning Yu, Quark Matter 2017@Chicago 19/20

2017/2/7 17:10-17:30

Summary✯ STAR systematic results of 𝑑(οΏ½οΏ½) production (𝑑𝑁/𝑑𝑦, 𝑝𝑇 ) from Au + Au collisions

at 𝒔𝐍𝐍� = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV

✯ Coalescence parameter𝐡9for𝑑 and οΏ½οΏ½ are extracted. 𝐡9(𝑑) and 𝐡9(οΏ½οΏ½) are found to

be different in the most central collisions

✯ Similar to the πœ‹ HBT and net-proton high moment, around sHHοΏ½ = 20 GeV, 𝐡9reaches a minimum implying EOS changes around the energy

✯ High statistics data are needed for future studies, especially at the high net-baryon

density, i.e., low collision energy region

Ning Yu, Quark Matter 2017@Chicago 20/20

Thank you

2017/2/7 17:10-17:30 Ning Yu, Quark Matter 2017@Chicago 21/20

Recommended