Area scaling from entanglement in flat space quantum field theory Introduction Area scaling of...

Preview:

Citation preview

Area scaling from entanglement in flat space quantum field theory

•Introduction

•Area scaling of quantum fluctuations

•Unruh radiation and Holography

Black hole thermodynamicsJ. Beckenstein (1973)

S. Hawking (1975)

S ATH

S = ¼ A

An ‘artificial’ horizon.

VV in

out

xdrΟO d

V

V )(

00outin Tr

)( VinOTr

0

Entropy: Sin=Tr(inlnin)

inoutina aA 0

out

)()( kout

kin TrTr

Sin=Sout

Srednicki (1993)

00

,,,, ba

ba AbaA

ba

ba AbaA,,

*TAA

c

cc 00

,,,, ba

ba cAbaAc

,,b

bb AA

†AA

00outTr 00inTr

Entanglement entropy of a sphere

xdH 422 ||

jmljml

jmljmljml j

ll

jjj

a ,,

2,,2

2

1,,,,2

2,,

)1(

12

11

out

in00outin Tr

Ent

ropy

R2

Srednicki (1993)

Other Thermodynamic quantities

Heat capacity: 2:: VinV ETrC

More generally: 2VinOTr

A?

A?

A different viewpoint

inout

xdrOO d

V

V )(

00 VO

00outin Tr

)( VinOTr

0

=

No accessRestricted measurements

Area scaling of fluctuationsR. Brustein and A.Y. , (2004)

OaV1

ObV2V1

Assumptions:

ayx yxyOxO O

||

1)()(

0||

V2

V V

dd yxddyOxO )()( ba

byx yxyOxO O

||

1)()(

||

OaV1

2

Area scaling of correlation functions

OaV1

ObV2

= V1 V2 Oa(x) Ob(y) ddx ddy

= V1 V2 Fab(|x-y|) ddx ddy

= D() Fab() d

D()= V V (xy) ddx ddy

Geometric term:

Operator dependent term

= D() 2g() d

= - ∂(D()/d-1) d-1 ∂g() d

Geometric termD()=V1 V2 (xy) ddx ddy

V1V2

x

y

= (r) ddr ddR

Rr ddR A2)

(r) ddr d-1 +O(d)

D()=C2 Ad + O(d+1)

Geometric termD()= (r) ddr ddR

R

r ddR V + A2)

(r) ddr d-1 +O(d)

D()=C1Vd-1 ± C2 Ad + O(d+1)

V1=V2

Area scaling of correlation functions

OaV1

ObV2

= V1 V2 Oa(x)Ob(y) ddx ddy

= V1 V2 Fab(|x-y|) ddx ddy

= D() Fab() d

= D() 2g() d

∂ (D()/d-1)

= - ∂(D()/d-1) d-1 ∂g() dUV cuttoff at ~1/

D()=C1Vd-1 + C2 Ad + O(d+1)

A

Energy fluctuations

yxdqdpddeEE

EE

qpEE ddddyxqpi

qp

qpdVV

)()(

2

221 )2(

1

8

100

yxddyHxHEE ddVV 0)()(000 21

)(xF

))())(2(2())(1(8

2)1(

)1(4

321

)1(2

xdxddx

dd

dd

d

qpddeEE

EE

qp ddyxqpiqp

qpd

)()(

2

2)2(

1

8

1

inoutdd

d

VV AAd

dd

EE

124

2

21

22

2

23

21

00

qpddeaaaaEE

qp

aaaaEExH

ddxqpiqqpp

qp

qqppqpd

)(††

††2

:)

(:

)2(

1

4

1:)(:

Intermediate summary

0O0 V

V

VTr(inOV)

0O0 2V

Tr(inOV2)

Finding in

''00')'','(

DLdtExp ][00

(x,0)=(x)

00

x

t

’(x)’’(x)

Trout (’’’in(’in,’’in) =

in’in’’in Exp[-SE] D

(x,0+) = ’in(x)(x,0-) = ’’in(x)

(x,0+) = ’in(x)out(x)(x,0-) = ’’in(x)out(x)

Exp[-SE] DDout

’’in(x)

’in(x)

DLdtExp ][)'','(

(x,0+)=’(x)

(x,0-)=’’(x)

DLdtExp ][)'','(

(x,0+)=’(x)

(x,0-)=’’(x)

Finding rho

x

t

’in(x)

’’in(x)

in’in’’in Exp[-SE] D

(x,0+) = ’in(x)(x,0-) = ’’in(x)

’| e-K|’’

Kabbat & Strassler (1994)

Rindler space(Rindler 1966)

ds2 = -dt2+dx2+dxi2

ds2 = -a22d2+d2+dxi2

t=/a sinh(a)x=/a cosh(a)

Acceleration = a/Proper time =

x

t

= const

=const

HR = Kx

Unruh Radiation(Unruh, 1976)

x

tds2 = -a22d2+d2+dxi

2

= 0

a≈ a+i2

Avoid a conical singularity

Periodicity of Greens functions

Radiation at temperature 0 = 2/a

R= e-HR= e-K= in

Schematic picture

VEVs in V of Minkowski space

V V

Observer in Minkowski space with d.o.f restricted to V

Canonical ensemble in Rindler space(if V is half of space)

0O0 V Tr(inOV)= Tr(ROV)=

Other shapesR. Brustein and A.Y., (2003)

in’in’’in Exp[-SE] D

(x,0+) = ’in(x)(x,0-) = ’’in(x)

x

t

’’in(x)

’in(x)

=’in|e-H0|’’out

d/dt H0 = 0

SE = 0H0dt

(x,t), (x,t), +B.C.

H0=K, in={x|x>0}

Evidence for bulk-boundary correspondence

V1

OV1OV2 A1A2

OV

1 OV

2

V2

OV

1 OV

2

V1 V2 OV1OV2- OV1OV2

Pos. of V2

Pos. of V2

R. Brustein D. Oaknin, and A.Y., (2003)

A working example0

1 ])([])([

A

d

V

d xdxJExpxdxJExp

A A

dd

dyxddyx 110

1)()(

V V

dd

dyxddyx )()(

V V

ddd yxdd

yx1

1

V V

ddd yxdd

yx3

1

A A

ddd yxdd

yx11

31

V

mdd

d

nn

V

xdxdTrTr m ......... 11

A

mdd

d

nn

A

xdxdTrTr m 11

10

1......... 1

Large N limit )()...(()( 1 xxdiagx N

R. Brustein and A.Y., (2003)

Summary

V

Area scaling of Fluctuations due to entanglement

Unruh radiation andArea dependent thermodynamics

A

Boundary theory for fluctuations

Statistical ensembledue to restriction of d.o.f

V

A Minkowski observer restricted to part of space will observe:•Radiation.•Area scaling of thermodynamic quantities.•Bulk boundary correspondence*.

Speculations

Theory with horizon(AdS, dS, Schwarzschild)

A

Boundary theory for fluctuations

V

Area scaling of Fluctuations due to entanglement

Statistical ensembledue to restriction of d.o.f

V

?

??

Israel (1976)Maldacena (2001)

Fin

Recommended