Applications of 3D-NMR In Organosilicon Chemistry · 36th Organosilicon Symposium May 30-31, 2003...

Preview:

Citation preview

36th Organosilicon SymposiumMay 30-31, 2003

Applications of 3D-NMR In Organosilicon Chemistry

Peter L. RinaldiDepartment of ChemistryThe University of AkronAkron, Ohio 44325-3601

http://www.chemistry.uakron.edu/magnet/whatsnew.html

Outline • Introduction/Problems & Practice

– Why do 3D-NMR

– Background

– Experimental Issues

• Heteronuclear 1H/13C/29Si Triple Resonance 3D NMR– Small Molecules

– Dendrimers

– Polymers

• Heteronuclear Double Resonance 3D NMR– Applications with unlabeled materials

– Applications with isotopic labeling

Why Do 3D-NMR?

• Dispersion proportional to ν3

– Resolve resonances– Interpretation by simple inspection

• Atomic connectivity information• Simplification by filtering

– Selectively examine one part of molecule• Sensitivity 1H-detected

2D-NMR Pulse Sequence

Preparation Evolution Mixing Acquisition

t1 t2

t2

Array of Spectra Obtained with Different t1 Delays

t1

t2

FT(t2)

f2

t1

a b

t1

t1a

b

FT(t1)f2

f1

( )n1

CH2CCH3

CH3

A

B

CD E

Resonance Assignments of PIBUsing HMQC & HMBC

Tokles et al., Macromolecules, 28, 3944 (1995)

HMBCHMQC

( )tn-1tn

Preparation Acquisition

Preparation Evolution Mixing Acquisition

1D

nD

n-1

t1

Preparation Evolution Mixing Acquisition

2D

1D/2D/3D-NMR Sequences

Sample Considerations in 3D-NMR of Synthetic Polymers

• Occurrence of structural unit• Abundance of nuclei • Possibility of labeling• Molecular weight• Structural diversity• Solubility

3/15-16/97 10

1H-1

2C

1H-1

3C1H

-13C

-29

Si Min

or

Junc

tion

Bac

kbon

e01234567

Log Intensity

NMR Signal Component

MinorJunctionBackbone

Relative Signal Strength for 1H-13C-29Si Structure Fragments

HXY 3D-NMR Sequence t3

t2t1Y X

H

C

H

C

H

t1

t2τ ττ

g1g2

∆ ∆ ∆∆

X

H1

GZ

τDecouple

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5t3

A C D E F G HB

Y

Saito et al. J. Magn. Resonance, 130, 135 (1998).Saito et al. J. Magn. Resonance, 132, 41 (1998).

Biological 3D-NMR Pulse Sequnces

H

N C

H

C N

H

C

H

C

O O

a H

N C

H

C N

H

C

H

C

O O

b

H

N C

H

C N

H

C

H

C

O O

c H

N C

H

C N

H

C

H

C

O O

d

H

N C

H

C N

H

C

H

C

O O

e

R1 R2

R1 R2

R1 R2

R1 R2

R1 R2

HNCO HNCA

HCACO

HCA(CO)N

15N-TOCSY-HMQC

Clore & Gronenborn, Progress NMR Spectoscopy, 23, 43 (1991).Griesinger et al., J. Magn. Resonance, 84, 14 (1989).

Biomolecular NMR Spectroscopy. J. Evans. Oxford University Press, New York, 1995.

“The devil is in the details.”

(H3CO)3Si Si(OCH3)3(H3CO)3Si

Si(OCH3)3 Si(OCH3)3Si(OCH3)3

Si(OCH3)3

Si(OCH3)3

(H3CO)3Si

Si(OCH3)3

(H3CO)3Si

Si(OCH3)3

1 3 5

2 4 6

IV

IV'

IIII'

II'

V

V'

VI

VI'

III III'

1) HSiCl3/Catalyst

2) CH3OH

CH2

Liu et al. Organometallics, 21, 3250 (2002)..

Silane Curing Agent

p pm-4 6-4 5-4 4-4 3-4 2-4 1-4 0

p pm0 .40 .81 .21 .62 .02 .4

p pm1 01 52 02 53 03 54 04 55 05 5

1H

1 3C

2 9S iI

I II II

IVV

V I

I ’

IV’

I II ’

V I’ I I’ ,V ’

a

c

b

Liu et al. Organometallics, 21, 3250 (2002).

1H/13C/29Si 1D-NMR of SilaneCuring Agent

HH

HH

HH

Si(OCH3)3(H3CO)3Si

Relative Signal Strength for Structure Components in 1H/13C/29Si Experiments

DOD = log [ IH / I HCSi fragment = 4-5

1H-1

2C

1H-1

3C

1H-1

3C-1

9F

1H-1

3C-

29Si

01234567

Log IntensityCoreSurface

HH

HH

HH

Si(OCH3)3(H3CO)3Si

3JCSi2JCSi

1JCSi1JCH = 140Hz

J = 5 HzCSi

J = 59 HzCSi

CH2CH

H

CH2 CH

CH2

CH

J = 140 HzCH

2

+5 +1A B C D E F G H

∆∆H1 ∆∆

φ1 φ5t3

φ φτ ττ τC13

2 4t2 MPF

φ3Si29

t1 MPF

Si

H

1H/13C/29Si 3D-NMR Pulse Sequence

H

HH

HH

Si(OCH3)3(H3CO)3Si

3JCSi2JCSi

1JCSi1JCH = 140Hz

Liu et al. Organometallics, 21, 3250 (2002)..

F1 (ppm)

510203040

F2(ppm)

0.60.81.01.21.41.61.82.02.22.4

F1 (ppm)

510203040

F2 (ppm)

-46-44-42-40-38

a cb1H-13C 3D Projection 1H-29Si 3D Projection1H-13C HMQC

Liu et al. Organometallics, 21, 3250 (2002)..

Projections of 1H/13C/29Si 3D-NMR HH

HH

HH

Si(OCH3)3(H3CO)3Si

3JCSi2JCSi

1JCSi1JCH = 140Hz

F3(ppm)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

F1 (ppm)

010203040

F3(ppm)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

F1 (ppm)

010203040

F1 (ppm)

10203040

JCSi=96Hz JCSi=13Hz JCSi=5Hz b c

fd e

a

4 4

4 4

2,6 2,6

3,5

3,5

2,6 2,6

3,5

3,5

7

2

86

4

3 15

(H3CO)3Si

Si(OCH3)3

IV

IV'

26

4

315

(H3CO)3SiSi(OCH3)3

7

8II

II'

δ29Si = - 44.97

δ29Si = - 45.57

2

1

Liu et al. Organometallics, 21, 3250 (2002)..

1H/13C/29Si 3D-NMR of Silane Curing Agent

F3(ppm)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

F1 (ppm)

010203040

F3(ppm)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

F1 (ppm)

010203040

F1 (ppm)

10203040

JCSi=96Hz JCSi=13Hz JCSi=5Hza b c

d e f

33

3 3

12 4 5 1

2 45

42 5

1

2 5

1 7

7

2

86

43 1

5

(H3CO)3Si

Si(OCH3)3

V

V'

26

43

15

(H3CO)3Si

Si(OCH3)37

8

II'

δ29Si = - 44.69

δ29Si = - 45.94

3

4

Liu et al. Organometallics, 21, 3250 (2002)..

1H/13C/29Si 3D-NMR of Silane Curing Agent

7

2

86

43

15

Si(OCH3)3

Si(OCH3)3VI'

VI

26

4

315

Si(OCH3)3Si(OCH3)3

78

IIIIII'

F3(ppm)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

F1 (ppm)

010203040

F3(ppm)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

F1 (ppm)

010203040

F1 (ppm)

10203040

JCSi=96Hz JCSi=13Hz JCSi=5Hzba

d fe

c

2

2 2

2

6

4

7

6

4

3

6 64 4

1

δ29Si = - 44.65

δ29Si = - 45.00

5

6

Liu et al. Organometallics, 21, 3250 (2002)..

1H/13C/29Si 3D-NMR of Silane Curing Agent

Relative Signal Strength for Structure Components in 1H/13C/29Si Experiments

DOD = log [ IH / I HCSi fragment = 4-5

SiCH2CH2 CH2CH2Si

Me

Si

CH2

CH2

Me

Me

Si

CH2

CH2

MeSi1H

-12C

1H-1

3C

1H-1

3C-1

9F

1H-1

3C-

29Si

01234567

Log IntensityCoreSurface

1H/29Si/13C 3D-NMR Spectrum With 1JcsiGeneration 2 Dendrimer

δ Si = 7.99ppm29

F1 (ppm)-6-226

F3(ppm)0.30.50.70.91.1

d

δ Si = 2.25ppm*29

F1 (ppm)-6-226

F3(ppm)0.30.50.70.91.1

e

F1 (ppm)-6-226

F3(ppm)0.30.50.70.91.1 δ Si = 9.95ppm29

cδ H1

δ C13

F1 (ppm)-12-6-048

F2(ppm)0.20.40.60.81.0

aδ H1

δ Si29

HMQC JHSi=5Hz

b

F2 (ppm)0246810

F3(ppm)0.20.40.60.81.0

δ H1

3D Projection

δ C13

[ 2 ]CH CH2

Me

Si ( 2CH CH iS H )2Si

Me

Me

4

H

JCH=140Hz

JCsi=59Hz

Chai et al. J. Am. Chem. Soc,121, 273 (1999).

1H/29Si/13C 3D-NMR Spectrum With 2JcsiGeneration 2 Dendrimer

[ 2 ]CH CH2

Me

Si ( 2CH CH iS H)2Si

Me

Me

4

HJCH=140Hz

JCsi=7Hz

d

δ S i = 7 . 9 9 p p m2 9

δ S i = 2 . 2 5 p p m2 9

e

δ S i = 9 . 9 5 p p m2 9

c

δ C1 3

δ H1

F 1 ( p p m )F 1 ( p p m )- 6- 226

F 3( p p m )0 . 20 . 40 . 60 . 81 . 0

F 1 ( p p m )- 6- 226

F 3( p p m )0 . 20 . 40 . 60 . 81 . 0

F 1 ( p p m )- 6- 226

F 3( p p m )0 . 20 . 40 . 60 . 81 . 0

Chai et al. J. Am. Chem. Soc,121, 273 (1999).

Dimethyl-siloxane Oligomer MD3MH

ppm0.050.150.256.00

9.015.98

6.035.98

4.654.754.851.02

a

ppm-0.5-0.00.51.01.52.02.53.03.5

b

ppm-20-15-10-505

c

Me Me

Si

Me

SiMe O Si O Si O O Si

Me

MeMe

Me

Me Me Me

H

M D1 D2 D3 MH

Chai et al., Polymer Preprints, 2001, 42(1), 15.

MD3MH 1H/13C and 1H/29Si 2D-NMRMe Me

Si

Me

SiMe O Si O Si O O Si

Me

MeMe

Me

Me Me Me

H

M D1 D2 D3 MH

F1 ( ppm )

-20-15-10-505

F2( ppm )

-0.1

-0.0

0.1

0.2

0.3

0.4

F1 ( ppm )

0.91.11.31.51.71.92.1

F2(ppm)

-0.1

-0.0

0.1

0.2

0.3

0.4

δ1H a b

δ29Siδ13C

δ1H

Chai et al., Polymer Preprints, 2001, 42(1), 15.

MD3MH 1H/13C/29Si 3D-NMR

ppm-20-18-16-14-12-10-8-6

ppm7.3

-20.13-7.14 7.06 -21.59 -22.17

0.81.42.02.6

F3(ppm)0.050.100.150.200.250.300.350.40

0.61.21.82.4

F3(ppm)0.050.100.150.200.250.300.350.40

F2 (ppm)

0.61.21.82.4

F3(ppm)0.050.100.150.200.250.300.350.40

0.61.21.82.4

F3(ppm)0.050.100.150.200.250.300.350.40

0.61.21.82.4

F3(ppm)0.050.100.150.200.250.300.350.40

*1H

*13C

*29Si

*29Si

D1 D2D3

MMH

Me Me

Si

Me

SiMe O Si O Si O O Si

Me

MeMe

Me

Me Me Me

H

M D1 D2 D3 MH

Chai et al., Polymer Preprints, 2001, 42(1), 15.

Poly(1-phenyl-1-silabutane)a

b

c

Saito, Chai, Pi, Tessier & Rinaldi, Macromolecules, 30, 1240 (1996)

1H-1

2C

1H-1

3C

1H-1

3C-1

9F

1H-1

3C-

29Si

01234567

Log IntensityChain EndBackbone

3D-NMR of PPSB

Saito et al., Macromolecules, 30, 1240 (1996)

The Power of Conditioning

Relative Signal Strength for Polymer Structure Components in 1H/13C & 1H/13C/15N Experiments

1H-1

2C

1H-1

3C

1H-1

3C-X

01234567

Log IntensityCoreSurface

DODHCN = log [ IH / I HCX fragment] = 6-7Dab-16 Dendrim er

N N

N

N

H N

H N

NH2

NH2

NH2

NH2

NH2

NH2

N

N

N

N

2

2

N H

N

N

N

N

H2N

H2N

H2N

H2N

H2N

H2N N H

N

N

2

2

DODHC = log [ IH / I HC fragment ]= 4-5

Dab-16 Dendrimer

N

N

H N NH2

NH2

NH2

N

N

2

N

DAB-16 1D-NMR Spectra

ppm1.41.82.22.6

ppm303540455055

3

65

49

8

7

10

11

1H

13C

1

2

Chai et al. Macromolecules, 33, 5395 (2000).

3D-HMQC-TOCSY Pulse Sequence

∆∆H1∆∆

φ4t3

φ2 φ3

t2 MLEV spin-lock

GARP

φ1

C13GARP

t1

A B C D E

3D-HMQC-TOCSY Slices DAB-16

p p m2 53 03 54 04 55 05 5

2.12

F3(ppm)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

δH

54.15

2.12

52.32

2.12

52.19

2.12

52.13

2.12

52.06

F2 (ppm)δH 2.12

51.74

2.40

40.40

1.32

30.61

1.00

24.89

1.20

24.38

1.46

24.31δC (ppm)

Dab-16 Dendrimer

N

N

H N NH2

NH2

NH2

N

N

2

N

Chai et al. Macromolecules, 33, 5395 (2000).

C-centeredB-centered

CCCECCECE

BCC/CCBBCB(2)

ECB/BCE

BBB(3)EBB(2)

EBECBB(2)/BBC(2)

CBCEBC/CBE

EEEEEB

BEB(2)CEECEC

BEC/CEB

E-centered

E = ethylene C = carbon monoxide B = n-butylacrylate

Possible Triads of Poly(EBC)Poly(ethylene-co-butylacrylate-co-carbon monoxide)

1D 13C NMR of Labeled Poly(BCE)

200 180 160 140 120 100 80 60 40 20 ppm

Unlabeled

O

13C

OBuO

13CH

OBuO13C

1H

13CAliph

13CC=O

GZ

∆ ∆ ∆ ∆t3

t2

g1g4 g5 g6g2

ττ

Decouple

τ

t1

τ

13C

H

O OBu

C

(2)(4)

(3)

(1)(6)

(5)

(7)

t1

t3

t2

1JCH

1JCC

H2C

(1) (2) (3) (4) (5) (6) (7)

3D Pulse Sequence

Monwar et al., Polymer Preprints, 44, 257 (2003)

Decouple

g3

Truncated 3D of Poly(EB*C)

3940414243444546

F3(ppm)

2.5

2.9

2.5

2.9

174175176 40424446F1 ppm F2 ppm

HMBC HSQC

HCACO HCACO

F2(ppm)

Monwar et al., Polymer Preprints, 44, 257 (2003)

3D Slices HCACO Poly(EB*C)

ppm174175176

F3(ppm)

2.5

2.9

46.5 45.5 40.5 40.5F2 ppm

HSQC

45 40

F1=175.3 F1=174.9 F1=174.7 F1=174.2

Monwar et al., Polymer Preprints, 44, 257 (2003)

ppm173.5174.0174.5175.0175.5176.0176.5

Hardware and Environment Requirements

• Capability of most modern instruments• Stable magnetic environment• Stable room temperature• Vibration-free environment• Gradient spectroscopy• Multiple channel instrument• High sample concentrations• Computer

NMR Experiment Sizes & Times

4 hours164k x 32 x 32

80 days 16,0004k x 1k x 1k3D

4 hours164k x 1k

300 hours2,00064k x 64k2D

20 sec . 0.2564k1D

Experiment Time

File Size(Mbytes)

Data SizeDimensionality

NMR Experiment Spectral Windows (750 MHz)

1,00010-50%13C

100-1,000Only few resonance

X

16,00050-80%1H3D

20,00050%13C

2,00050-80%1H2D

10,00040,000

FullFull

1H13C

1D

Window (Hz)Window Nucleus

Data Processing

• Optimal use of folding• Optimize S:N• Linear prediction• Zero filling• Digital filtering• Live with poor digital resolution

Acknowledgments• Senior• C. Tessier• W. Youngs• L. Galya• J. Hansen• L. Wilczek• H. Yu• S. Hu

• Funding• NSF (DMR-9310642, DMR-9617477, DMR-0073346, DMR-0330816,

CHE-9412387)• Kresge Foundation• Donors to Kresge Challenge Program at University of Akron• Ohio Board of Regents, Research Challenge• University of Akron• Dupont, Dow Corning, Nalorac, Varian

StudentsT. SaitoL. WeixiaM. Chai

G. OuangC. HelferZ. PiY. Niu

StaffV. DudipalaS. StakleffT. WaglerJ. Massey G. S. HatvanyD. G. Ray

http://www.chemistry.uakron.edu/magnet/whatsnew.html

Recommended