Anomalies in the space of coupling constantsstrings/Seiberg-2019.pdfโ€“ A mixed...

Preview:

Citation preview

Anomalies in the Space of Coupling Constants

Nathan SeibergIAS

C. Cรณrdova, D. Freed, H.T. Lam, NS, to appear

1

Introduction

โ€ข Long history of exploring a classical or quantum theory as a function of its parameters. Two complementary applications:โ€“ Family of theories (e.g. Berry phase)โ€“ Make the coupling constants spacetime dependent

โ€ข More generally, we should view every theory as a function of โ€“ Spacetime dependent coupling constantsโ€“ Spacetime dependent background gauge fields for global

symmetriesโ€“ Spacetime geometry (and associated choices like spin-

structure, etc.)โ€“ Explore defects (e.g. interfaces) as these vary in spacetime

2

Introduction

We will discuss โ€œgeneralized anomaliesโ€™โ€™ in this large space of backgrounds.โ€ข This view will streamline, unify, and strengthen many known

results, and will lead to new ones.โ€ข We will start by demonstrating them in very simple examples

(QM of a particle on a ring, 2d ๐‘ˆ๐‘ˆ(1) gauge theory).โ€“ Since these examples are elementary, the more powerful

formalism is not essential. But the examples provide a good pedagogical way to demonstrate the formalism.

โ€ข Then we will briefly turn to more advanced and more recently studied examples.

โ€ข Weโ€™ll end by revisiting the free 4d fermion.3

Introduction

The generalized anomaly has two classes of applicationsโ€ข An anomaly in a (multi-parameter) family of theories can lead,

ร  la โ€˜t Hooft, to constraints on its long-distance behavior, e.g. predict phase transitions. โ€“ This is also useful as a test of dualities

โ€ข The coupling constants can vary in spacetime leading to a defect. The anomaly constrains the dynamics on the defect.

Since this view unifies many different, recently-studied phenomena, some of the results may seem familiar to many of you.

4

Quantum mechanics of a particle on a ring

โ„’ = 12๏ฟฝฬ‡๏ฟฝ๐‘ž2 + ๐‘–๐‘–

2๐œ‹๐œ‹๐œƒ๐œƒ๏ฟฝฬ‡๏ฟฝ๐‘ž with ๐‘ž๐‘ž โˆผ ๐‘ž๐‘ž + 2๐œ‹๐œ‹

๐œƒ๐œƒ โˆผ ๐œƒ๐œƒ + 2๐œ‹๐œ‹

Spectrum ๐ธ๐ธ๐‘›๐‘› = 12๐‘›๐‘› โˆ’ ๐œƒ๐œƒ

2๐œ‹๐œ‹

2

Symmetries: โ€ข ๐‘ˆ๐‘ˆ 1 : ๐‘ž๐‘ž โ†’ ๐‘ž๐‘ž + ๐›ผ๐›ผโ€ข ๐’ž๐’ž๐’ž๐’ž: ๐‘ž๐‘ž ๐œ๐œ โ†’ โˆ’๐‘ž๐‘ž โˆ’๐œ๐œโ€ข ๐œƒ๐œƒ = 0,๐œ‹๐œ‹ also ๐’ž๐’ž: ๐‘ž๐‘ž โ†’ โˆ’๐‘ž๐‘ž (and therefore also ๐’ž๐’ž) combining to ๐‘‚๐‘‚ 2

โ€ข ๐œƒ๐œƒ = ๐œ‹๐œ‹ the Hilbert space is in a projective representation. โ€“ A mixed ๐’ž๐’ž-๐‘ˆ๐‘ˆ(1) anomaly [Gaiotto, Kapustin, Komargodski,

NS]. This guarantees level-crossing there.5

Quantum mechanics of a particle on a ring[Gaiotto, Kapustin, Komargodski, NS]

Couple to a background ๐‘ˆ๐‘ˆ(1) gauge field ๐ด๐ด

โ„’ =12

(๏ฟฝฬ‡๏ฟฝ๐‘ž + ๐ด๐ด)2+๐‘–๐‘–2๐œ‹๐œ‹

๐œƒ๐œƒ ๏ฟฝฬ‡๏ฟฝ๐‘ž + ๐ด๐ด + ๐‘–๐‘– ๐‘˜๐‘˜๐ด๐ด

๐‘˜๐‘˜ is a coupling for the background field only โ€“ a counterterm.With nonzero ๐ด๐ด the ๐œƒ๐œƒ periodicity is modified

๐œƒ๐œƒ,๐‘˜๐‘˜ โˆผ (๐œƒ๐œƒ + 2๐œ‹๐œ‹,๐‘˜๐‘˜ โˆ’ 1)

โ€ข Related to that, the spectrum ๐ธ๐ธ๐‘›๐‘› = 12๐‘›๐‘› โˆ’ ๐œƒ๐œƒ

2๐œ‹๐œ‹

2is invariant

under ๐œƒ๐œƒ โ†’ ๐œƒ๐œƒ + 2๐œ‹๐œ‹ , but the states are rearranged ๐‘›๐‘› โ†’ ๐‘›๐‘› + 1 .

โ€ข We can restore the 2๐œ‹๐œ‹ periodicity by adding a โ€œbulk termโ€ ๐‘–๐‘–2๐œ‹๐œ‹๐œƒ๐œƒ๐œƒ๐œƒ๐ด๐ด.

6

โ„’ =12๏ฟฝฬ‡๏ฟฝ๐‘ž2 +

๐‘–๐‘–2๐œ‹๐œ‹

๐œƒ๐œƒ๏ฟฝฬ‡๏ฟฝ๐‘ž

Break ๐‘ˆ๐‘ˆ 1 โ†’ โ„ค๐‘๐‘, e.g. by adding a potential โˆ’ cos ๐‘๐‘๐‘ž๐‘žThe qualitative conclusions are unchanged.โ€ข For ๐‘๐‘ even, we still have a similar ๐’ž๐’ž โˆ’ โ„ค๐‘๐‘ anomaly at ๐œƒ๐œƒ = ๐œ‹๐œ‹

and hence the ground state is degenerate there.โ€ข For ๐‘๐‘ odd, there is no anomaly โ€“ not a projective

representation. But there is still degeneracy at ๐œƒ๐œƒ = ๐œ‹๐œ‹.โ€“ In terms of background fields, we can preserve ๐’ž๐’ž at ๐œƒ๐œƒ = ๐œ‹๐œ‹

by adding a counterterm ๐‘–๐‘– ๐‘๐‘โˆ’12๐ด๐ด for the โ„ค๐‘๐‘ gauge field ๐ด๐ด.

But then there is no ๐’ž๐’ž at ๐œƒ๐œƒ = 0 (referred to as โ€œglobal inconsistencyโ€).

7

Quantum mechanics of a particle on a ring[Gaiotto, Kapustin, Komargodski, NS]

Quantum mechanics of a particle on a ringโ„’ =

12๏ฟฝฬ‡๏ฟฝ๐‘ž2 โˆ’ cos(๐‘๐‘๐‘ž๐‘ž) +

๐‘–๐‘–2๐œ‹๐œ‹

๐œƒ๐œƒ๏ฟฝฬ‡๏ฟฝ๐‘ž

Can also break ๐’ž๐’ž for all ๐œƒ๐œƒ, e.g. by adding another degree of freedom โ„’ โ†’ โ„’ + 1

2๏ฟฝฬ‡๏ฟฝ๐‘ฅ2 + ๐‘‰๐‘‰ ๐‘ฅ๐‘ฅ + ๐‘–๐‘– ๐‘ฅ๐‘ฅ ๏ฟฝฬ‡๏ฟฝ๐‘ž with generic ๐‘‰๐‘‰(๐‘ฅ๐‘ฅ).

Now the symmetry is only โ„ค๐‘๐‘ (no ๐‘ˆ๐‘ˆ(1) and no ๐’ž๐’ž).Add a โ„ค๐‘๐‘ background field ๐ด๐ด and a counterterm ๐‘–๐‘–๐‘˜๐‘˜๐ด๐ด (with ๐‘˜๐‘˜ an integer modulo ๐‘๐‘). Again

๐œƒ๐œƒ,๐‘˜๐‘˜ โˆผ (๐œƒ๐œƒ + 2๐œ‹๐œ‹,๐‘˜๐‘˜ โˆ’ 1)Continuously shifting ๐œƒ๐œƒ by 2๐œ‹๐œ‹ the states are rearranged โ€“ a state with โ„ค๐‘๐‘ charge ๐‘™๐‘™ is mapped to a state with a โ„ค๐‘๐‘ charge ๐‘™๐‘™ + 1 ๐‘š๐‘š๐‘š๐‘š๐œƒ๐œƒ ๐‘๐‘.

The ground state must jump (level-crossing) at least once in ๐œƒ๐œƒ โˆˆ0,2๐œ‹๐œ‹ . There is a โ€œphase transition.โ€

8

Quantum mechanics of a particle on a ring

โ„’ =12๏ฟฝฬ‡๏ฟฝ๐‘ž2 โˆ’ cos ๐‘๐‘๐‘ž๐‘ž +

๐‘–๐‘–2๐œ‹๐œ‹

๐œƒ๐œƒ๏ฟฝฬ‡๏ฟฝ๐‘ž +12๏ฟฝฬ‡๏ฟฝ๐‘ฅ2 + ๐‘‰๐‘‰ ๐‘ฅ๐‘ฅ + ๐‘–๐‘– ๐‘ฅ๐‘ฅ ๏ฟฝฬ‡๏ฟฝ๐‘ž

๐œƒ๐œƒ,๐‘˜๐‘˜ โˆผ (๐œƒ๐œƒ + 2๐œ‹๐œ‹,๐‘˜๐‘˜ โˆ’ 1)Two views on the parameter spaceโ€ข Either ๐œƒ๐œƒ โˆผ ๐œƒ๐œƒ + 2๐œ‹๐œ‹๐‘๐‘ and preserve the โ„ค๐‘๐‘ symmetry โ€ข Or ๐œƒ๐œƒ โˆผ ๐œƒ๐œƒ + 2๐œ‹๐œ‹, but violate the โ„ค๐‘๐‘ symmetry

Generalized anomaly between the โ„ค๐‘๐‘ symmetry and ๐œƒ๐œƒ โˆผ ๐œƒ๐œƒ +2๐œ‹๐œ‹ (related discussion in [Thorngren; NS, Tachikawa, Yonekura]).

The anomaly is characterized by the 2d bulk term ๐‘–๐‘–2๐œ‹๐œ‹โˆซ ๐œƒ๐œƒ๐œƒ๐œƒ๐ด๐ด.

9

Quantum mechanics of a particle on a ring

Anomaly between the global โ„ค๐‘๐‘ symmetry and the ๐œƒ๐œƒ periodicity.

It is characterized by the 2d bulk term ๐‘–๐‘–2๐œ‹๐œ‹โˆซ ๐œƒ๐œƒ๐œƒ๐œƒ๐ด๐ด

โ€ข Viewing our system as a one-parameter family of theories labeled by ๐œƒ๐œƒ the anomaly means that there must be level-crossing โ€“ โ€œa phase transition.โ€ (Alternatively, this follows from tracking the โ„ค๐‘๐‘ charge of the ground state.)

โ€ข โ€œinterfacesโ€ where ๐œƒ๐œƒ changes as a function of time carry โ„ค๐‘๐‘charge.

โ€ข In order to discuss the interfaces we need to define the action more carefully.

10

Quantum mechanics of a particle on a ringWhen ๐œƒ๐œƒ โˆˆ ๐•Š๐•Š1 is time dependent โˆฎ ๐œƒ๐œƒ ๐œ๐œ ๏ฟฝฬ‡๏ฟฝ๐‘ž ๐œ๐œ ๐œƒ๐œƒ๐œ๐œ should be defined more carefully.Divide the Euclidean-time circle into patches ๐’ฐ๐’ฐ๐ผ๐ผ = (๐œ๐œ๐ผ๐ผ , ๐œ๐œ๐ผ๐ผ+1),where ๐œƒ๐œƒ is a continuous function in โ„ (no 2๐œ‹๐œ‹ jump) and it jumps by 2๐œ‹๐œ‹๐‘š๐‘š๐ผ๐ผ with ๐‘š๐‘š๐ผ๐ผ โˆˆ โ„ค on overlaps of patches.

12๐œ‹๐œ‹

โˆฎ ๐œƒ๐œƒ ๐œ๐œ ๏ฟฝฬ‡๏ฟฝ๐‘ž ๐œ๐œ ๐œƒ๐œƒ๐œ๐œ โ‰ก ๏ฟฝ๐ผ๐ผ

12๐œ‹๐œ‹

๏ฟฝ๐’ฐ๐’ฐ๐ผ๐ผ๐œƒ๐œƒ๐œƒ๐œƒ๐‘ž๐‘ž + ๐‘š๐‘š๐ผ๐ผ๐‘ž๐‘ž ๐œ๐œ๐ผ๐ผ mod 2๐œ‹๐œ‹

โ€ข Independent of the trivializationโ€ข Invariant under ๐‘ž๐‘ž โ†’ ๐‘ž๐‘ž + 2๐œ‹๐œ‹ and under ๐œƒ๐œƒ โ†’ ๐œƒ๐œƒ + 2๐œ‹๐œ‹โ€ข If ๐œƒ๐œƒ(๐œ๐œ) has nonzero winding ๐‘€๐‘€ = โˆ‘๐ผ๐ผ๐‘š๐‘š๐ผ๐ผ, this term is not

invariant under ๐‘ˆ๐‘ˆ 1 : ๐‘ž๐‘ž โ†’ ๐‘ž๐‘ž + ๐›ผ๐›ผ. This is our anomaly.

11

Smooth, universal

Discontinuous, not universal (can add an operator)

Discontinuous with ๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–.It is transparent

3 kinds of โ€œinterfacesโ€

12

๐œƒ๐œƒ = 2๐œ‹๐œ‹๐‘š๐‘š

๐œƒ๐œƒ = 0

๐œƒ๐œƒ = 0

๐œƒ๐œƒ = 2๐œ‹๐œ‹๐‘š๐‘š

๐œƒ๐œƒ = 0

๐œƒ๐œƒ = 2๐œ‹๐œ‹๐‘š๐‘š

This is a rapid change in the Hamiltonian at some Euclidean time. In the โ€œsudden approximationโ€ it relabels the states

๐‘›๐‘› โ†’ ๐‘›๐‘› + ๐‘š๐‘š ,which can be achieved by multiplying by ๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–. This means that the interface has ๐‘ˆ๐‘ˆ(1) charge ๐‘š๐‘š. When ๐œƒ๐œƒ winds ๐‘š๐‘š times around the Euclidean circle, the ๐‘ˆ๐‘ˆ(1)symmetry is violated by ๐‘š๐‘š unites.

๐œƒ๐œƒ = 0

A steep but smooth โ€œinterfaceโ€

13

๐œƒ๐œƒ = 2๐œ‹๐œ‹๐‘š๐‘š

This anomaly is related to a โ€œsymmetryโ€

Normally an anomaly is associated with a global symmetry: 0-form, 1-form, etc.We can think of this anomaly as associated with a โ€œ-1-form symmetry.โ€Just as -1-branes (instantons) are not branes, a -1-form global symmetry is not a symmetry.If we view it as a global symmetry,โ€ข ๐œƒ๐œƒ is its gauge field (its transition functions involve jumps by 2๐œ‹๐œ‹โ„ค)

โ€ข ๐œƒ๐œƒ๐œƒ๐œƒ is the field strength (well defined even across overlaps)โ€ข Then, this anomaly follows the standard anomaly picture.

14

2d ๐‘ˆ๐‘ˆ(1) gauge theory

Consider a 2d ๐‘ˆ๐‘ˆ(1) gauge theory with ๐‘๐‘ charge-one scalars ๐œ™๐œ™๐‘–๐‘–

and impose that the potential ๐‘‰๐‘‰ ๐œ™๐œ™ 2 is ๐‘†๐‘†๐‘ˆ๐‘ˆ(๐‘๐‘) invariant.

Include ๐‘–๐‘–2๐œ‹๐œ‹๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ.

We are not going to assume charge conjugation symmetry.โ€ข The system has a ๐‘ƒ๐‘ƒ๐‘†๐‘†๐‘ˆ๐‘ˆ ๐‘๐‘ global symmetry and we couple it

to a background ๐‘ƒ๐‘ƒ๐‘†๐‘†๐‘ˆ๐‘ˆ ๐‘๐‘ gauge field ๐ต๐ต with the counterterm

2๐œ‹๐œ‹๐‘–๐‘–๐‘˜๐‘˜๐‘๐‘๐‘ค๐‘ค2 ๐ต๐ต

๐‘ค๐‘ค2 ๐ต๐ต is the second Stiefel-Whitney class of the ๐‘ƒ๐‘ƒ๐‘†๐‘†๐‘ˆ๐‘ˆ(๐‘๐‘)bundle. ๐‘˜๐‘˜ is an integer modulo ๐‘๐‘.

โ€ข Now ๐œƒ๐œƒ,๐‘˜๐‘˜ โˆผ (๐œƒ๐œƒ + 2๐œ‹๐œ‹,๐‘˜๐‘˜ โˆ’ 1) [Gaiotto, Kapustin, Komargodski, NS].

15

2d ๐‘ˆ๐‘ˆ(1) gauge theoryโ€ข Now ๐œƒ๐œƒ,๐‘˜๐‘˜ โˆผ (๐œƒ๐œƒ + 2๐œ‹๐œ‹,๐‘˜๐‘˜ โˆ’ 1) [Gaiotto, Kapustin,

Komargodski, NS]. โ€ข This can be viewed as a mixed anomaly between the

periodicity of ๐œƒ๐œƒ and the global ๐‘ƒ๐‘ƒ๐‘†๐‘†๐‘ˆ๐‘ˆ ๐‘๐‘ symmetry.โ€ข It is described by the 3d anomaly term (see also [Thorngren])

๐‘–๐‘–๐‘๐‘โˆซ ๐œƒ๐œƒ๐œƒ๐œƒ๐‘ค๐‘ค2 ๐ต๐ต

16

2d ๐‘ˆ๐‘ˆ(1) gauge theory๐‘–๐‘–๐‘๐‘โˆซ ๐œƒ๐œƒ๐œƒ๐œƒ๐‘ค๐‘ค2 ๐ต๐ต

Use the anomaly as in the QM example.โ€ข Using the anomaly in a one-parameter family of theories:

since the system is gapped, it must have a phase transition at some ๐œƒ๐œƒ.โ€“ Note that we do not assume charge conjugation symmetry.

โ€ข A smooth interface, where ๐œƒ๐œƒ โ†’ ๐œƒ๐œƒ + 2๐œ‹๐œ‹๐‘š๐‘š must have an anomalous QM system on it โ€“ a projective ๐‘ƒ๐‘ƒ๐‘†๐‘†๐‘ˆ๐‘ˆ ๐‘๐‘representation with ๐‘๐‘-ality ๐‘š๐‘š. โ€“ Can interpret as ๐‘š๐‘š charged particle due to Colemanโ€™s

mechanism.

17

4d S๐‘ˆ๐‘ˆ(๐‘๐‘) gauge theoryThis system has a one-form โ„ค๐‘๐‘ global symmetry.

Couple it to a classical two-form โ„ค๐‘๐‘ gauge field ๐ต๐ต. It twists the ๐‘†๐‘†๐‘ˆ๐‘ˆ ๐‘๐‘ bundle to a ๐‘ƒ๐‘ƒ๐‘†๐‘†๐‘ˆ๐‘ˆ(๐‘๐‘) bundle with [Kapustin, NS]

๐‘ค๐‘ค2 ๐œƒ๐œƒ = ๐ต๐ต ,

where ๐‘ค๐‘ค2 ๐œƒ๐œƒ is the second Stiefel-Whitney class of the ๐‘ƒ๐‘ƒ๐‘†๐‘†๐‘ˆ๐‘ˆ(๐‘๐‘) bundle โ€“ โ€˜t Hooft twisted configurations.

Mixed anomaly between the โ„ค๐‘๐‘ one-form symmetry and ๐œƒ๐œƒ โˆผ๐œƒ๐œƒ + 2๐œ‹๐œ‹ characterized by the 5d term

๐‘–๐‘–๐‘๐‘ โˆ’ 12๐‘๐‘

โˆซ ๐œƒ๐œƒ๐œƒ๐œƒ ๐’ซ๐’ซ(๐ต๐ต)

with ๐’ซ๐’ซ ๐ต๐ต the Pontryagin square of ๐ต๐ต.18

4d S๐‘ˆ๐‘ˆ(๐‘๐‘) gauge theory

๐‘–๐‘–๐‘๐‘ โˆ’ 12๐‘๐‘

โˆซ ๐œƒ๐œƒ๐œƒ๐œƒ ๐’ซ๐’ซ(๐ต๐ต)

This leads to earlier derived results:

โ€ข In ๐’ฉ๐’ฉ = 1 SUSY, a mixed anomaly between the โ„ค2๐‘๐‘ R-symmetry and the โ„ค๐‘๐‘ one-form symmetry. Hence, a TQFT on domain walls [Gaiotto, Kapustin, NS, Willett] in agreement with the string construction of [Acharya, Vafa].

โ€ข โ€ฆ

19

4d S๐‘ˆ๐‘ˆ(๐‘๐‘) gauge theory

๐‘–๐‘–๐‘๐‘ โˆ’ 12๐‘๐‘

โˆซ ๐œƒ๐œƒ๐œƒ๐œƒ ๐’ซ๐’ซ(๐ต๐ต)

โ€ข Without SUSY, a mixed anomaly between ๐’ž๐’ž (equivalently, ๐’ž๐’ž๐’ซ๐’ซ)and the โ„ค๐‘๐‘ one-form symmetry at ๐œƒ๐œƒ = ๐œ‹๐œ‹ (for even ๐‘๐‘) implies a transition at ๐œƒ๐œƒ = ๐œ‹๐œ‹ (or elsewhere) [Gaiotto, Kapustin, Komargodski, NS]

โ€“ Can use the new anomaly in similar systems without ๐’ž๐’ž, (e.g. add a massive scalar with coupling ๐‘–๐‘–๐œ™๐œ™ ๐‘‡๐‘‡๐‘‡๐‘‡(๐น๐น โˆง ๐น๐น)). The gapped system must have a transition for some ๐œƒ๐œƒ.

โ€ข Nontrivial TQFT on interfaces where ๐œƒ๐œƒ changes by 2๐œ‹๐œ‹๐‘š๐‘š[Gaiotto, Komargodski, NS; Hsin, Lam, NS]

20

Smooth, universal

Discontinuous, not universal (can add d.o.f on the interface)

Discontinuous, with special QFT(e.g. a CS term) it is transparent

3 kinds of interfaces

21

๐œƒ๐œƒ = 2๐œ‹๐œ‹๐‘š๐‘š

๐œƒ๐œƒ = 0

๐œƒ๐œƒ = 0

๐œƒ๐œƒ = 2๐œ‹๐œ‹๐‘š๐‘š

๐œƒ๐œƒ = 0

๐œƒ๐œƒ = 2๐œ‹๐œ‹๐‘š๐‘š

A free massive Weyl fermion in 4dโ€ข The parameters: a complex mass ๐‘š๐‘š.โ€ข Upon compactification of the ๐‘š๐‘š plane, a nontrivial 2-cycle in

the parameter space.โ€ข The phase of ๐‘š๐‘š can be removed by a chiral rotation ๐œ“๐œ“ โ†’ ๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–๐œ“๐œ“. But because of a ๐‘ˆ๐‘ˆ 1 -gravitational anomaly, the

Lagrangian is shifted by ๐‘–๐‘–๐‘–๐‘–192๐œ‹๐œ‹2

๐‘‡๐‘‡๐‘‡๐‘‡(๐‘…๐‘… โˆง ๐‘…๐‘…).

โ€ข As above, we should add the counterterm ๐‘–๐‘– ๐œƒ๐œƒ๐บ๐บ384 ๐œ‹๐œ‹2

๐‘‡๐‘‡๐‘‡๐‘‡(๐‘…๐‘… โˆง ๐‘…๐‘…),

and then we should identify ๐‘š๐‘š,๐œƒ๐œƒ๐บ๐บ โˆผ ๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–๐‘š๐‘š,๐œƒ๐œƒ๐บ๐บ + ๐›ผ๐›ผ

22

A free massive Weyl fermion in 4d๐‘š๐‘š,๐œƒ๐œƒ๐บ๐บ โˆผ ๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–๐‘š๐‘š,๐œƒ๐œƒ๐บ๐บ + ๐›ผ๐›ผ

โ€ข For nonzero ๐‘š๐‘š we can remove the anomaly, i.e. absorb the phase of ๐‘š๐‘š, in a redefinition: ๐œƒ๐œƒ๐บ๐บ โ†’ ๐œƒ๐œƒ๐บ๐บ โˆ’ arg(๐‘š๐‘š). But we cannot do it for all complex ๐‘š๐‘š.

โ€ข This can be described as an anomaly using the 5d term๐‘–๐‘–โˆซ ๐›ฟ๐›ฟ 2 ๐‘š๐‘š ๐œƒ๐œƒ2๐‘š๐‘š ๐ถ๐ถ๐‘†๐‘†๐‘”๐‘”

with ๐ถ๐ถ๐‘†๐‘†๐‘”๐‘” is the gravitational Chern-Simons term.

Equivalently, this can be written as the 6d term๐‘–๐‘–

192๐œ‹๐œ‹โˆซ ๐›ฟ๐›ฟ 2 ๐‘š๐‘š ๐œƒ๐œƒ2๐‘š๐‘š ๐‘‡๐‘‡๐‘‡๐‘‡(๐‘…๐‘… โˆง ๐‘…๐‘…)

โ€ข Related discussion in [NS, Tachikawa, Yonekura].23

A free massive Weyl fermion in 4d1

192๐œ‹๐œ‹๐›ฟ๐›ฟ 2 ๐‘š๐‘š ๐œƒ๐œƒ2๐‘š๐‘š ๐‘‡๐‘‡๐‘‡๐‘‡(๐‘…๐‘… โˆง ๐‘…๐‘…)

Applications:โ€ข A 2-parameter family of theories. At some point in the

complex ๐‘š๐‘š plane the theory is not trivially gapped.โ€“ For the free fermion this is trivial. But the same conclusion

in more complicated models, with additional fields and interactions. Note, we do not need any global symmetry.

โ€ข Defects. ๐‘š๐‘š โˆผ ๐‘ฅ๐‘ฅ + ๐‘–๐‘–๐‘–๐‘– is a string along the ๐‘ง๐‘ง axis. As in [Jackiw, Rossi], the anomaly means that there are Majorana-Weyl fermions (๐‘๐‘๐ฟ๐ฟ โˆ’ ๐‘๐‘๐‘…๐‘… = 1/2) on the defect. โ€“ The same conclusion in a more complicated theory with

more fields and interactions.24

โ€ข To study ordinary anomalies we couple every global symmetry to a classical background field and place the theory on an arbitrary spacetime. Denote all these background fields by ๐ด๐ด. An anomaly is the statement that the partition function might not be gauge invariant or coordinate invariant.

โ€ข This is described by a higher dimensional classical (invertible) field theory for ๐ด๐ด.

โ€ข Similarly, we make all the coupling constants ๐œ†๐œ† background fields and then the partition function might not be invariant under identifications in the space of coupling constants.

โ€ข This is described by a generalized anomaly theory โ€“ a higher dimensional classical (invertible) field theory for ๐ด๐ด and ๐œ†๐œ†.

Conclusions

25

โ€ข This anomaly theory is invariant under renormalization group flow. Therefore, it can be used, ร  la โ€˜t Hooft, to constrain the long-distance dynamics and to test dualities. For example, it can force the low-energy theory to have some phase transitions.

โ€ข Defects are constructed by making ๐ด๐ด and ๐œ†๐œ† spacetime dependent. Using these values in the anomaly theory, we find the anomaly of the theory along the defect.

Conclusions

26

โ€ข We presented examples of these anomalies (and their consequences) in various number of dimensions. The parameter space in the examples has one-cycles or two-cycles.

โ€ข We have studied many other cases with related phenomena.โ€“ 4d ๐‘†๐‘†๐‘ˆ๐‘ˆ ๐‘๐‘ , ๐‘†๐‘†๐‘†๐‘†๐‘–๐‘–๐‘›๐‘› ๐‘๐‘ , ๐‘†๐‘†๐‘†๐‘†(๐‘๐‘) with quarks

โ€ข There are many other cases, we have not yet studied.

Conclusions

27

Recommended