Analysis of non-stationary climatic extreme events

Preview:

DESCRIPTION

Analysis of non-stationary climatic extreme events. MARTA NOGAJ. Didier Dacunha-Castelle (U Orsay) Farida Malek (U Orsay) Sylvie Parey (R&D EDF) Pascal Yiou (LSCE). The “Problem”. Warmer climate Trend in the average field Is there a trend in the extreme field? - PowerPoint PPT Presentation

Citation preview

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Analysis of non-stationary climatic extreme events

Didier Dacunha-Castelle (U Orsay) Farida Malek (U Orsay)Sylvie Parey (R&D EDF)

Pascal Yiou (LSCE)

MARTA NOGAJ

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

The “Problem”• Warmer climate

– Trend in the average field

Is there a trend in the extreme field? Is it similar to the average?• Economical & Social impact = climatological concern

– Analysis and prediction of the temporal evolution of spatial extremes

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Our extreme events

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Introduction of non-stationarity

• Amplitude of Extremes– Generalized Pareto Distribution

• Dates of Extremes– Poisson Distribution

1

)(1)(

tuxuXxXP

Scale parameter depends on covariate t

Intensity parameter depends on covariate t

!

)(exp)())((n

ttntNn

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Descriptive analysis• Preliminary studies

– Non-parametric models for σ(t) and I(t)• Cubic Splines

Non-stationarity in extremes is apparent– Hint on form of covariate model

Choice of 2 classes of models– Polynomials

» Stationary – constant α» Linear – α + β t» Quadratic - α + β t + γ t2

– Continuous piecewise linear models (CPLM)• Consistent with the requirement of a climatic spatial classification

• xClassification of grid points based on the dynamical evolution

of extremes and not their absolute values

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Non-stationary caveats

• Non-stationarity depends on a covariate t– Nature

• Time• Other (GHG, NAO)

• Stationary or non-stationary ξ ?– ξ: physical property of a region– Previous analyses on temperature data show little variation of ξ

(e.g. Parey et al.)– Difficult to estimate

• tests performed – non-stationarity rejected in > 90% STATIONARY ξ

• Varying threshold in the GPD?= GEV model with varying μ parameter– Attempt with elimination of mean trend

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

“Varying” threshold • Basic method

– Forget data under the threshold, keep the extremes– Try and check for non-stationarity

• Keep in mind the whole data Varying threshold– Theory complex– Alternative non-parametric method

• Spline adjustment to seasonal mean• Subtraction of this mean variation

≈ equivalent to the variation of the threshold

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Method descriptionfor non-stationary GPD/Poisson

• Parameter estimation– Maximum likelihood

• Model choice for σ(t) & I(t)– Likelihood ratio test

• Best degree choice - polynomial• Best number of nodes – piecewise linear

• Checking the adequacy of the models – Classical Goodness of fit tests

• Uncertainty estimation– Confidence Intervals

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Asymptotic properties

• No obvious extension of the stationary EVT– Classical asymptotic theory does not always work– E.g. Malek & Nogaj 2005

• Linear Poisson Intensity– Convergence speeds to normal law differ for the 2 parameters

• Quadratic Poisson Intensity– Non convergent (non trivial) estimator for the constant term– The highest degree is predominant when t ∞

– Confidence Intervals• Usage, as often proposed, of the observed information matrix is

“perhaps” incorrect– Empirical information matrices might not converge

– Solution• Analysis through simulations

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Bypassing the lack of asymptotics

• Analysis of previous procedure through simulation– N simulations

• GPD– Simulation of data from a GPD distribution with polynomial σ(t)

• Poisson– Simulation of data from a Poisson distribution with polynomial I(t)

using change of clock– Estimation from simulation repetitions

• order (stationary/linear/quadratic)• parameters of models

– Confidence Interval computation– Correction check

• Order/parameters

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Empirical results• Correct estimation

– Depends on the length of data (length of t)– Depends on initial parameters

• σ = α + β * t– α/β < length(t)

Percentage of correct estimations depending on initial values and observation length ratio

0

20

40

60

80

100

0.01

0.05 0.5

0.25 0.1 1

2.5 5 10 50

(α/β) / length(t)

Perc

enta

ge

200 observations

2000 observations

Percentage of correct estimations of the order of the models depending on the initial values and the length of the

observations

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Application• Data

– NCEP Reanalyses– Daily extreme data

• 1947-2004– Temperature MAX– Summer (JJA)– North-Atlantic

• Lat: 30N to 70N• Lon: 80W to 40E

– Covariate• Time

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Trends of Tmax JJA – Pareto

σ in

crea

sing

σ de

crea

sing

σ(t) = σ

σ (t) = σ0 + σ1 t

σ (t) = σ0 + σ1 t + σ2 t2

Non-stationary σ

(Amplitudes)

“ Varying threshold ”

Mean variation has been eliminated

σ in

crea

sing

σ de

crea

sing

Sigma degree Tmax JJA Sigma degree Tmax JJA

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Trends of Tmax JJA – Poisson

λ in

crea

sing

λ de

crea

sing

λ(t) = λ

λ (t) = α + β t

λ (t) = α + β t + γ t2

Non-stationary λ

(Frequencies)

λ in

crea

sing

λ de

crea

sing

“ Varying threshold ”

Mean variation has been eliminated

Intensity degree Tmax JJAIntensity degree Tmax JJA

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Non-stationary Return Levels

• Return Level:– NRP(z): number of exceedances of z in RP (return period)– z : Return Level for RP

• ENRP(z)=1

• Different concept from the usual stationary case:– Assumption of correctness of extrapolation in the future– Depends highly on position in time

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Non-stationary Return Levels (2)

• Disputed– Description of past evolution– Prediction of future evolution

• Metamathematical problem !

Well-known trade off between fit and prediction

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Final Quizz• Climatological question

– Are extreme events varying?– Is the variation of extreme events similar to the variation of the average and the

variance?• Statistical question

– Can we estimate extreme values variability?– Can we adapt the theory to a non-stationary context?

• Statistical answer– Possible trend detection in extreme events– Connected statistical problems have been identified & analyzed

BE CAREFUL!• Climatological answer

– Detected regions of the dynamical variation of extreme events• Amplitude / Occurrence

– “Varying threshold” method used to “separate” extreme variability from the average field

– Different covariates allowed us to investigate the cause of the trend in extremes• GHG – comparable with monotonic trend (time)• NAO – no major effect on extreme climate

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

But is it “final” ?

• Climatological perspectives– Other covariates– Analyses of model simulations– Other physical domains (E2C2 program)

• Statistical perspectives– Introduction of a “spatial” context– Analysis of “clusters”

• Length of extremes + droughts

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Thank You!R project: http://www.r-project.com

CLIMSTAT: http://www.ipsl.jussieu.fr/CLIMSTAT/

Nogaj et al., “Intensity and frequency of Temperature Extremes over the North Atlantic Region”, GRL (submitted 2005)Malek F. and Nogaj M., “Asymptotique des Poissons non-stationnaires”, Canadian Statistical Journal (submitted 2005)D. Dacunha-Castelle and E. Gassiat ,”Testing the order of a model using locally conic parameterization: population mixtures and stationary ARMA processes“ Annals of Stat.,  27, 4, 1178-1209, 1999. D. Dacunha-Castelle and E. Gassiat, “Testing in locally conic models and application to mixture models”  ESAIM P et S, 1, 1997. Parey S. et al., “Trends in extreme high temperatures in France: statistical approach and results”, Climate Change (submitted 2005 )

Naveau P. et al. Statistical Analysis of Climate Extremes. ``Comptes rendus Geosciences de l'Academie des Sciences". (2005, in press)

Coles S. (2001) An Introduction to Statistical Modeling of Extreme Values, Springer Verlag

Davison A and Smith R. (1990) Models for exceedances over high thresholds. Journal of the Royal Statistical Society, 52, 393-442.

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

The Menu• POT model• Introduction of non-stationarity

– GPD/Poisson model– Descriptive analysis– “Varying threshold”

• Trend detection – method description• Method Analysis

– Problems of lack of asymptotic convergence – Empirical results– Statistical considerations about CPLMs

• Application– Climatological maps

• Return Levels– Prediction

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Continuous Piecewise Linear Models(CPLM)

• GPD & Poisson• Difficulty

– Non-identifiable• (as mixtures or ARMA processes)

• Classical Likelihood tests do not apply– D. Dacunha-Castelle & Gassiat E., ESAIM (´99), Annals of Statistics (´97)

– In practice• Artificial separation of nodes

– d – distance (non trivial to determine)

1,2,3… parts

dtt ii 1

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

CPLM vs. Polynomials

• Model choice– Polynomial models and piecewise models are not nested

• No statistical comparison

• CPLM vs. polynomials– Advantages

• “Objective” cut of time– Climatic periods

• Possible asymptotic theory– Disadvantages

• Statistical problems of non-identifiability• Higher number of parameters

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Climatological model interpretation

• GEV – GPD/Poisson comparison– GEV

• μ is the mean (a natural trend)• σ is the variance Interpretation is straight forward

– GPD/Poisson• σ is the mean as well as σ2 is the variance• I(t) has a clear interpretation of the frequency of events• The threshold u is somehow arbitraryIdea of a varying threshold has been proved useful

These joint models improve the quality of climatological interpretation

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Example

• Unbounded non-stationarity• Classical asymptotic fails if:

– E.g. m(t)=α0 + α1t + α2t2 (α1α2 ≠0)» In fine, the deterministic mean “makes” the extremes

– Possible heuristic• Usage justified if

– α0(T) << logT– α1(T) ≤ logT / T– α2(T) ≤ logT/T2

• Question• Cf. later in my presentation

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

General methodvalidation - GPD

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Tmin DJF - Poisson

Seasons of Extreme events

Em

piric

al e

stim

atio

n of

λ

Lat: 32N

Lon: 5W

Empirical estimation - the histogram of Poisson with fitted Poisson λ covariate for GP 512

1958 1972 1985 1999 2003

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Return levels

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

Piecewise linear• Alternative to polynomial fitting

– Linear fragments connection• Less risky than polynomial interpolation with

high degree for extrapolation

Nodes

Marta Nogaj (marta.nogaj@cea.fr)

Laboratoire des Sciences du Climat et de l’Environnement

T max JJAThreshold & Xi

-0.2

-0.4

High temperatures not gaussian Threshold u is an upper percentile of the series

Recommended