An experimental testing system for fiber reinforced ... experimental testing system for fiber...

Preview:

Citation preview

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Univ. of Kentucky Center for Applied Energy Research

January 14, 2009

Jeffrey Helm

Stephen Kurtz

Evan O’Brien

Abdul-Rahman Salkini

An experimental testing system for fiber reinforced polymer (FRP)

strengthened concrete panels under uniform pressure loads

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Univ. of Kentucky Center for Applied Energy Research

Jeffrey Helm

Stephen Kurtz

Evan O’Brien

Abdul-Rahman Salkini

An experimental testing system for fiber reinforced polymer (FRP)

strengthened concrete panels under uniform pressure loads

January 14, 2009

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Overview of the presentation

•Motivation for the research

•Concrete panel and FRP configurations

•Loading system

•Digital image correlation basics

•Testing results

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Motivation

Reinforced Concrete

Bridge

Carbon Fiber

Sheet Bonded

With Epoxy

•Determine the design parameters that govern use of fiber reinforced

polymer (FRP) strips for external reinforcement of existing concrete

structures

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Concrete panel specimens

2.1-m

2.1

-m

64-mm

2.1-m x 2.1-m x 64-mm panels

Cylinder strength: 30MPa

9.5-mm coarse rock aggregate

Phase 1

3.42-mm diameter – 75-mm spacing

Yield: 710 MPa

Ultimate: 731 MPa

Elongation: 0.5%

Phase 2

6.35-mm diameter – 150-mm spacing

Yield: 314 MPa

Ultimate: 459 MPa

Elongation: 27.5%

Coated with epoxy bonded sand

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

FRP patterns

Phase 1

* *

Phase 2

* Glass fiber strips

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Uniform pressure loading

FRP (tension)

Concrete (compression)

Steel (tension)

Pressure

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Loading system

concrete

panel

pressure bladder

rocker

assembly

stiffening plate

top plate

outer frame

tube

bolt

sleeve

strong floor containment

basin

Maximum pressure = 62 kPa

Distributed load = 278 kN

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Loading system

concrete

panel

pressure bladder

rocker

assembly

stiffening plate

top plate

outer frame

tube

bolt

sleeve

strong floor containment

basin

Maximum pressure = 62 kPa

Distributed load = 278 kN

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

DIC in two dimensions

PC with digitizer

Specimen

CCD camera

White light sources

90°

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Measurement basis

Two-dimensional image correlation is based on the ability to accurately

match portions from one image to corresponding locations in a second

image.

Correspondence can be determined to within 0.02 pixels

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Measurement basis

Because the method is computer based we can perform the matching on

a large number of points in the image.

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Displacement example

X img (pixel)

Yim

g(p

ixe

l)

400 600 800

0

200

400

600

800

V (pixel)

120

110

100

90

80

70

60

50

40

Vertical displacements

2.0 pixels/contour

X img (pixel)

Yim

g(p

ixe

l)

400 600 800

0

200

400

600

800

U (pixel)

7.5

5

2.5

0

-2.5

-5

-7.5

-10

-12.5

Horizontal displacements

0.5 pixels/contour

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

DIC fundamentals

The image correlation method can be broken into four segments that

answer the following questions:

1. How do you differentiate a positions on the image?

2. How do I get from here to there?

3. How do you work on a scale smaller than a pixel?

4. How do you determine the optimal mapping parameters?

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Patterns and grayscales

From an image, how do you know where you are on the surface?

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Patterns and grayscales

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Mapping from one image to another

C

Q

q

c

uc

vc

Image N

Image 0

Constant displacement mapping:

qx = Qx+uc

qy = Qy+vc

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Mapping from one image to another

C

Q uc

vc

Image N

Image 0

Constant strain mapping:

q

c

qx = Qx + uc + (Qx-Cx)duc/dx + (Qy-Cy)duc/dy

qx = Qx + vc + (Qx-Cx)dvc/dx + (Qy-Cy)dvc/dy

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Mapping from one image to another

C

Q uc

vc

Image N

Image 0

Constant strain mapping:

q

c

qx = Qx + uc + (Qx-Cx)duc/dx + (Qy-Cy)duc/dy

qx = Qx + vc + (Qx-Cx)dvc/dx + (Qy-Cy)dvc/dy

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Working at sub-pixel scales

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Working at sub-pixel scales

0

100

200

0

2

4

6

8

10

0

2

4

6

8

10

0

100

200

0

2

4

6

8

10

0

2

4

6

8

10

Gra

y le

ve

l

Gra

y level

0

100

200

0

2

4

6

8

10

0

2

4

6

8

10

0

100

200

0

2

4

6

8

10

0

2

4

6

8

10

Gra

y level

Gra

y level

Raw image data Bi-linear interpolation

Bi-cubic interpolation Cubic spline interpolation

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Optimizing the mapping parameters

How do we determine the optimal mapping parameters?

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Error functions

common error functions:

(a) i|I’(qi) – I(Qi)| (magnitude of the

intensity differences)

(b) i(I’(qi) – I(Qi))2 (sum of the squares

of intensity differences)

(c) 1 - i(I’(qi) I(Qi))/((i(I’(qi)2)½ (i(I(Qi)

2)½) (normalized cross-

correlation)

error is minimized using a Newton-Raphson based optimization technique

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Extension into 3D Space

PC with digitizer Camera 1

Camera 2

Specimen/grid

location

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Camera parameters

Intrinsic Parameters:

PhD - Pinhole Distance

Cx - Hor. Image Center

Cy - Vert. Image Centerk - Lens Distortion Coef.

Extrinsic Parameters:a - Rotation about Z Axis

b - Rotation about Y Axis

g - Rotation about X Axis

Xo - X Axis Offset

Yo - Y Axis Offset

Zo - Z Axis Offset

Sensor Plane

Pinhole

Optic Axis

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

System calibration

Calibrations methods use a

combination of known points

from standards and

correspondence between

cameras to determine each

camera’s parameters.

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Shape Measurement

Surface in

space

Undeformed

Image Cam 1

Undeformed

Image Cam 0

Camera 1

Camera 0

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Displacement Measurement

Undeformed

Image Cam 1

Undeformed

Image Cam 0

Deformed

Image Cam 1

Deformed

Image Cam 0

Surface in

space

Camera 1

Camera 0

Displaced

location

Displacement

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Displacements to strains

Strains determined from

curve fitting local areas

of data

Local areas define a quasi

gage-length for the calculations

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Strain Example

X img (pixel)

Yim

g(p

ixe

l)

400 600 800

0

200

400

600

800

Eyy

0.185

0.16

0.135

0.11

0.085

0.06

0.035

X img (pixel)

Yim

g(p

ixe

l)

400 600 800

0

200

400

600

800

Exy

0.032

0.022

0.012

0.002

-0.008

-0.018

-0.028

-0.038

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Strain example

X img (pixel)

Yim

g(p

ixe

l)

400 600 800

0

200

400

600

800

Exx

-0.01

-0.015

-0.02

-0.025

-0.03

-0.035

-0.04

-0.045

-0.05

-0.055

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Measurement system

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Measurement system

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Panel configurations

.30 m

Local area

Global area

1.98 m

Control panel FRP panel

Local area

Global area

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Surface patterns

global pattern as imaged

from the global camerasglobal and local pattern

as imaged from the local

cameras

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Center point displacement

Center point displacement (mm)

Pre

ssu

re(k

Pa

)

0 50 100

0

5

10

15

20

25

30

35

40

control panel

FRP panel

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Control panel displacement

Animation / Video

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Out-of-plane displacements

X location (mm) -1000

-500

0

500

Y location (m

m)

-1000

-500

0

500

1000

-20

0

20

40

60

80

100

120

140

Wd

isp

lace

me

nt

(mm

)

-20

0

20

40

60

80

100

120

140

X location (mm) -1000

-500

0

500

Y location (m

m)

-1000

-500

0

500

1000

-20

0

20

40

60

80

100

120

140

Wd

isp

lace

me

nt

(mm

)

-20

0

20

40

60

80

100

120

140

Control panel FRP panel

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Initial shape (local area)

X location (mm)

0 200 400 600 800 1000

Ylo

ca

tio

n(m

m)

-1000

-800

-600

-400

-200

0

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Strain progression

Animation / Video

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Failure strains

X location (mm)

0 200 400 600 800 1000

Ylo

ca

tio

n(m

m)

-1000

-800

-600

-400

-200

0

E1

0.04

0.0375

0.035

0.0325

0.03

0.0275

0.025

0.0225

0.02

0.0175

0.015

0.0125

0.01

0.0075

0.005

0.0025

0

X location (mm)S

trip

str

ain

0 200 400 600 800-0.002

0

0.002

0.004

0.006

0.008

0.01 Y = -150 mm strip

Y = -450 mm strip

Y = -750 mm strip

strain map (1st princ. strains) strains along each FRP strip

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Failure modes

Shear-Flexure Failure – Type 1

Shear-Flexure Failure – Type 2

Shear-Flexure Failure – Type 3

*Glass only

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Phase 1 Results

Control phase 1

ultimate = 26.9 kPa

max deflection = 55.6 mm

U/C Disp

1.41 25.5

1.34 37.8

1.48 47.5

U/C Disp

1.0, 55.6

1.41 25.5

1.34 37.8

1.48 47.5

ultimate pressure/control pressure

displacement in mm

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Phase 2 Results

Control phase 1

ultimate = 34.8 kPa

max deflection = 135.1 mm

ultimate pressure/control pressure

displacement in mm

U/C Disp

1.63 77.2

1.05 135.1

1.44 64.6

*

U/C Disp

1.00 135.1

0.96 59.6

1.65 75.5

0.92 125.8

*

Exp

eri

men

tal

stu

dy o

f F

RP

rein

forc

ed

co

ncre

te p

an

els

Lafa

yett

e C

oll

eg

e D

ep

t. o

f M

ech

an

ical

En

gin

eeri

ng

Conclusions

•Determine the design parameters that govern use of fiber

reinforced polymer (FRP) strips for external reinforcement of

existing concrete structures

Develop a method to apply a uniform distributed pressure load to

large (7ft x 7ft) panels of steel reinforced concrete

Adapt the digital image correlation (DIC) technique to measure

full-field displacements and strains in the panels

Acquire panel failure data for a variety of FRP reinforcement

configurations

Analyze the raw image data to obtain full-field displacements,

strains and crack patterns

•Use the data to develop design criteria for FRP reinforcement of

concrete panels

Recommended