Advanced Microeconomics - Home -...

Preview:

Citation preview

Advanced Microeconomics

Ivan Etzo

University of Cagliari

ietzo@unica.itDottorato in Scienze Economiche e Aziendali, XXXIII ciclo

Ivan Etzo (UNICA) Lecture 1: Technolgy 1 / 61

Overview

1 Firms behavior and technology

2 Production Plan and Technology set

3 Isoquants

4 Marginal (Physical) Products

5 Returns-to-Scale

6 The technical rate of substitution (TRS)

7 The elasticity of substitution

8 The Constant Elasticity of Substitution (CES) production function

9 Well-Behaved Technologies

Ivan Etzo (UNICA) Lecture 1: Technolgy 2 / 61

Firms behavior and technological constraints

The firms behavior is expressed by the choices made by the firms

Choices are not free, there are some constraints coming from:

Customers (Demand);Competitors (Market structure);Nature (Technology);

Ivan Etzo (UNICA) Lecture 1: Technolgy 3 / 61

Technology

At the moment the firm makes the production decisions it faces sometechnological constraints

The technology describes the feasible ways to produce the outputsfrom inputs at a certain point in time ( t ).

Inputs or factors of production: land, labor, capital, raw materials(e.g. energy)

Often, different technologies will produce the same product

Usually capital and labor are considered as the two main broadcategories of inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 4 / 61

Defining capital

Capital goods (or Physical capital): inputs which are themselvesan output (i.e. they have been produced too).

Financial capital: the amount of money which is required to start (ormaintain) a business.

Ivan Etzo (UNICA) Lecture 1: Technolgy 5 / 61

The production set

Technological constraints imply that a given amount of output canbe produced only with certain combination of inputs.

The production set represents all combinations of inputs andoutputs that are technologically feasible.

Which technology is best?

How do we compare technologies?

Ivan Etzo (UNICA) Lecture 1: Technolgy 6 / 61

Input bundles

xi denotes the amount used of input i ( i.e. the level of input i).

An input bundle is a vector of the input levels; (x1, x2, · · · , xn).

E.g. (x1, x2, x3, , · · · , xn) = (6, 0, 9, · · · , 3).

Ivan Etzo (UNICA) Lecture 1: Technolgy 7 / 61

Production Functions

y denotes the output level.

The technology’s production function states the maximum amountof output possible from an input bundle.

y = f (x1, · · · xn)

Inputs and outputs are usually measured in flow units (i.e., hoursworked per week, machines hours per week → units of output perweek)

yt = f (x1t , · · · xnt)

Ivan Etzo (UNICA) Lecture 1: Technolgy 8 / 61

Production FunctionsOne input, one output

Ivan Etzo (UNICA) Lecture 1: Technolgy 9 / 61

Technology Sets

A production plan is an input bundle and an output level;(x1, · · · , xn, y).

A production plan is feasible if

y ≤ f (x1, · · · xn)

The collection of all feasible production plans is the technology set.

Ivan Etzo (UNICA) Lecture 1: Technolgy 10 / 61

Technology SetOne input, one output

Ivan Etzo (UNICA) Lecture 1: Technolgy 11 / 61

Technology SetOne input, one output

Ivan Etzo (UNICA) Lecture 1: Technolgy 12 / 61

Technologies with Multiple Inputs

What does a technology look like when there is more than one input?

The two input case:Input levels are x1 and x2.Output level is y .

Suppose the production function is

y = f (x1, x2) = 2x1/31 x

1/32

Ivan Etzo (UNICA) Lecture 1: Technolgy 13 / 61

Technologies with Multiple Inputs

E.g. the maximal output level possible from the input bundle

(x1, x2) = (1, 8) is

y = f (x1, x2) = 2× 11/3 × 81/3 = 2× 1× 2 = 4

Ivan Etzo (UNICA) Lecture 1: Technolgy 14 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 15 / 61

Technologies with Multiple Inputs

The y output unit isoquant is the set of all input bundles that yieldexactly the same output level y .

Ivan Etzo (UNICA) Lecture 1: Technolgy 16 / 61

Isoquants with Two Variable Inputs

Isoquants can be graphed by adding an output level axis anddisplaying each isoquant at the height of the isoquants output level.

Ivan Etzo (UNICA) Lecture 1: Technolgy 17 / 61

More isoquants tell us more about the technology.

Ivan Etzo (UNICA) Lecture 1: Technolgy 18 / 61

More isoquants tell us more about the technology.

Ivan Etzo (UNICA) Lecture 1: Technolgy 19 / 61

Technologies with Multiple Inputs

The complete collection of isoquants is the isoquant map.

The isoquant map is equivalent to the production function – each isthe other.

E.g.

y = f (x1, x2) = 2x1/31 x

1/32

Ivan Etzo (UNICA) Lecture 1: Technolgy 20 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 21 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 22 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 23 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 24 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 25 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 26 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 27 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 28 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 29 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 30 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 31 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 32 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 33 / 61

Technologies with Multiple Inputs

Ivan Etzo (UNICA) Lecture 1: Technolgy 34 / 61

Technologies with Multiple Inputs

Stop

Ivan Etzo (UNICA) Lecture 1: Technolgy 35 / 61

Cobb-Douglas Technologies

A Cobb-Douglas production function is of the form

y = Axa11 xa2

2 ·, · · · · xann

E.g.

y = x1/31 x

1/32

with n = 2, A = 1, a1 = 1/3, a2 = 1/3

Ivan Etzo (UNICA) Lecture 1: Technolgy 36 / 61

Cobb-Douglas Technologies

Ivan Etzo (UNICA) Lecture 1: Technolgy 37 / 61

Fixed-Proportions Technologies

A fixed-proportions production function is of the form

y = min{a1x1, a2x2, · · · anxn}

E.g.

y = min{x1, 2x2}with n = 2, A = 1, a1 = 1, a2 = 2

Ivan Etzo (UNICA) Lecture 1: Technolgy 38 / 61

Fixed-Proportions Technologies

y = min{x1, 2x2}

Ivan Etzo (UNICA) Lecture 1: Technolgy 39 / 61

Perfect-Substitutes Technologies

A perfect-substitutes production function is of the form

y = a1x1 + a2x2 + · · · + anxn

E.g.y = x1 + 3x2

with n = 2, a1 = 1, a2 = 3

Ivan Etzo (UNICA) Lecture 1: Technolgy 40 / 61

Perfect-Substitutes Technologies

y = x1 + 3x2

Ivan Etzo (UNICA) Lecture 1: Technolgy 41 / 61

Marginal (Physical) Products

The marginal product of input i is the rate-of-change of the output

level as the level of input i changes, holding all other input levels fixed.

MPi =∂y

∂xi

The marginal product of input i is diminishing if it becomes smaller

as the level of input i increases. That is, if

∂MPi

∂xi=

∂xi

(∂y

∂xi

)=

∂2

∂x2i

< 0

Remember the law of diminishing marginal product.

Ivan Etzo (UNICA) Lecture 1: Technolgy 42 / 61

Returns-to-Scale

Marginal products describe the change in output level as a singleinput level changes.

Returns-to-scale describes how the output level changes as all inputlevels change in direct proportion (e.g. all input levels doubled, orhalved).

Ivan Etzo (UNICA) Lecture 1: Technolgy 43 / 61

Returns-to-Scale

Constant returns-to-scale

The technology described by the production function f (x) exhibits

constant returns-to-scale if, for any input bundle (x1, · · · xn),

f (kx1, kx2, · · · kxn) = kf (x1, x2, · · · xn)

i.e. the production function f (x) is homogeneous of degree 1.E.g. (k = 2) doubling all input levels doubles the output level.

Increasing returns-to-scale

f (kx1, kx2, · · · kxn) > kf (x1, x2, · · · xn)

Decreasing returns-to-scale

f (kx1, kx2, · · · kxn) < kf (x1, x2, · · · xn)

Ivan Etzo (UNICA) Lecture 1: Technolgy 44 / 61

Returns-to-Scale

A single technology can ’locally’ exhibit different returns-to-scale.

Ivan Etzo (UNICA) Lecture 1: Technolgy 45 / 61

Examples of Returns-to-Scale

Perfect-Substitutes production function

y = a1x1 + a2x2 + · · · + anxn

y = a1 (kx1) + a2 (kx2) + · · · + an (kxn)

= k (a1x1 + a2x2 + · · · + anxn)

= ky

⇒ Constant RtS

Ivan Etzo (UNICA) Lecture 1: Technolgy 46 / 61

Examples of Returns-to-Scale

Perfect-Complements production function

y = min{a1x1, a2x2, · · · anxn}

min{a1 (kx1) , a2 (kx2) , · · · an (kxn)}

k (min{a1x1, a2x2, · · · anxn})

⇒ Constant RtS

Ivan Etzo (UNICA) Lecture 1: Technolgy 47 / 61

Examples of Returns-to-Scale

Cobb-Douglas production

y = xa11 xa2

2 · · · xann

(kx1)a1 (kx2)a2 · · · (kxn)an

= ka1+··· +any

Thus:if∑n

i=1 ai = 1⇒ Constant RtSif∑n

i=1 ai > 1⇒ Increasing RtSif∑n

i=1 ai < 1⇒ Decreasing RtS

Ivan Etzo (UNICA) Lecture 1: Technolgy 48 / 61

Return to Scale and Marginal Product

A technology can exhibit increasing returns-to-scale even if all of itsmarginal products are diminishing.Why?

E.g.

y = x2/31 x

2/32

MPx1 =∂y

∂x1=

2

3x−1/31 x

2/32

∂MP1

∂x1= −1

3

2

3x−4/31 x

2/32 < 0

MPx2 = MPx1 < 0

RtS: a1 + a2 = 43 > 0 ⇒ Increasing RtS

Ivan Etzo (UNICA) Lecture 1: Technolgy 49 / 61

Return to Scale and Marginal Product

A marginal product is the rate-of-change of output as one input levelincreases, holding all other input levels fixed.

Marginal product diminishes because the other input levels are fixed,so the increasing inputs units have each less and less of other inputswith which to work.

Therefore, diminishing marginal product is a short run concept

RtS imply that all inputs vary, thus it refers to the long run

Ivan Etzo (UNICA) Lecture 1: Technolgy 50 / 61

The technical rate of substitution (TRS)

Assume y = f (x1, x2) and that the firm is producing y∗ = f (x∗1 , x

∗2 )

At what rate can a firm substitute one input for another withoutchanging its output level?

Using total differential of function f (x1, x2)

dy =∂f

∂x1dx1 +

∂f

∂x2dx2

imposedy = 0

∂f

∂x1dx1 +

∂f

∂x2dx2 = 0

dx2

dx1= −∂f /∂x1

∂f /∂x2

Ivan Etzo (UNICA) Lecture 1: Technolgy 51 / 61

The technical rate of substitution (TRS)

Ivan Etzo (UNICA) Lecture 1: Technolgy 52 / 61

The technical rate of substitution (TRS)Example: The Cobb-Douglas technology

Consider f (x1, x2) = xα1 x1−α2

TRS = −∂f /∂x1

∂f /∂x2= − α

1− αx2

x1

Ivan Etzo (UNICA) Lecture 1: Technolgy 53 / 61

The elasticity of substitution

The elasticity of substitution measures the curvature of an isoquant.

σ =

∆(x2/x1)x2/x1

∆TRSTRS

It measures the percentage change in the factor ratio divided by thepercentage change in TRS.

Using logarithmic derivative

ε =dlny

dlnx

Ivan Etzo (UNICA) Lecture 1: Technolgy 54 / 61

The elasticity of substitutionExample: The Cobb-Douglas technology

Consider f (x1, x2) = xα1 x1−α2

we know thatTRS = − α

1− αx2

x1

→ x2

x1= −1− α

αTRS

taking logs and deriving with respect to | TRS |

lnx2

x1= ln

1− αα

+ ln | TRS |

σdln (x2/x1)

dln | TRS |= 1

Ivan Etzo (UNICA) Lecture 1: Technolgy 55 / 61

The CES production function

The Constant Elasticity of Substitution has the following form

y = [a1xρ1 + a2xρ2 ]1ρ

the CES exhibits constant returns to scale

It contains other production functions as a special cases1 If ρ = 1⇒ Perfect-substitutes production function2 If ρ = 0⇒ Cobb-Douglas production function3 If ∞ = − ⇒ Fixed-proportion production function

Ivan Etzo (UNICA) Lecture 1: Technolgy 56 / 61

The CES production function

1 ρ = 1⇒ y = a1x1 + a2x2

2 ρ = 0 Consider the TRS of the CES produciton function

TRS = −a1

a2

(x1

x2

)ρ−1

when ρ→ 0 then the TRS tends to the following limit

TRS = −a1

a2

(x1

x2

)that is, the TRS of the Cobb-Douglas production function (i.e. theisoquant is the same).

3 ρ =∞ then the TRS of the CESTRS=0 if x2 > x1 ; TRS =∞ if x1 > x2

i.e. Just as the TRS of the Fixed-proportion production function.

Ivan Etzo (UNICA) Lecture 1: Technolgy 57 / 61

The CES production function

Proof: the CES has a constant elasticity of substitutionWe need to compute the elasticity of substitution σFrom the TRS of the CES (where, for simplicity, a1 = a2 = 1)

TRS = −(

x1

x2

)ρ−1

x2

x1=| TRS |

11−ρ

taking logs

lnx2

x1=

1

1− ρln | TRS |

and applying the definition of σ using the log derivative

σ =dln(x2/x1)

dln | TRS |=

1

1− ρ.Ivan Etzo (UNICA) Lecture 1: Technolgy 58 / 61

Well-Behaved Technologies

A well-behaved technology is

monotonicconvex.

Ivan Etzo (UNICA) Lecture 1: Technolgy 59 / 61

Well-Behaved TechnologiesMonotonicity

Monotonicity: More of any input generates more output.

Ivan Etzo (UNICA) Lecture 1: Technolgy 60 / 61

Well-Behaved TechnologiesConvexity

Convexity: If the input bundles x and x both provide y units ofoutput then the mixture tx + (1− t)x provides at least y units ofoutput, for any 0 < t < 1.

Convexity implies that the | TRS | decreases as x1 increases.

Ivan Etzo (UNICA) Lecture 1: Technolgy 61 / 61

Recommended