กก ก ˘ ˇˆ ˙ ˝˛ก ˇ ˚˙ ˚˜ ! ˇ ก˜˘ ˆ! &˘ ˛ ˇ%ก ÿ ü ó ø è ÿ ü...

Preview:

Citation preview

สวพ.

มทร.ส

วรรณภ

กก ก

ก !" #$ก%!& %'ก

. !

&)%**%&

&%!&**%&+%,

-!&./ 0!" -ก")1

2" 2557

สวพ.

มทร.ส

วรรณภ

ก,ก

ก ก !"#$% !&&%!'(ก%' $% $ $% (!%!&&%)%*!'(!(ก +,ก,- ./ &ก +,,- -0 -10 ,)#"# !"#$% !&&% (!%!&&%)%* !'(ก%'$% '(,$ 'ก!' +,,-" $% % +)1 !'( ()(%1'ก!#% $% . &)-2ก +,$# $% +- !ก!

# ,!

สวพ.

มทร.ส

วรรณภ

+#$#$ ก"2ก3. !4*-,4ก. -# 'ก (-( 1ก%#,%ก

1,0-!& . # ,! ก-!& . $+ 2557 66!7 ก (-( , &%)%)

"! &

ก #:. -1"2ก3. !4*-,4ก. -#'ก (-( 1ก%#,%ก $% -1.!. !4*-,4ก. -#'ก (-( 1ก%#,%ก ! 3 4 . ก 4 FML 4 RML $% 4 EB %$.BC(!#&%&&.$ก*3 R D21,ก%$.BC( 1 1) . )กก$ก$$D$% &#ก.ก# $% ,&ก.ก# 2) #$. % 1 #$. 3) . !4G(-4*') !ก 0.01 $% 0.02 4) ,# % 3 , 1 5, 15 $% 25 &'$#% :ก%),% 1,000 ) $% :#!')'ก.!. !4*- 1 ก ($..-($! +%ก -

4 FML $% 4 RML . !4*-'ก. !4-%$! $% 4 EB . !4*-'ก. !4-%$ &!! C 0.01 (4 FML ก4 RML . !4*-'ก. !4-%$!$% !4-%$$#ก#กC!:#! 0.01 ! ก. )กก$ก$$D$% &#ก.ก# $% ก. )กก$ก$$,$% &ก.ก#

สวพ.

มทร.ส

วรรณภ

Title A STUDY EFFECTIVENESS OF THE METHOD OF PARAMITER ESTIMATIONS IN MULTILEVEL ANALYSIS FOR SMALL SAMPLE SIZES Author Montri Songthong Capital of research Budget of 2014 Keywords Multilevel analysis, Hierarchical Linear Models

ABSTRACT

This research is aimed to study the effectiveness of the method of parameter estimations in multilevel analysis for small sample sizes and also compare 3 methods of effectiveness of parameter estimation in multilevel analysis for small sample sizes. They were FML, RML and EB. This research study was modeled the simulations by using the Monte Carlo by the programming language R which consisted of the following simulation conditions: 1) the population distributions were left skewness and kurtosis lower than normal and right skewness and kurtosis higher than normal ; 2) 1 Independent variable each level; 3) Intraclass Correlation Coefficient were 0.01 and 0.20; and 4) sample sizes, 3 for each level which were 5, 15, and 25. Each situation was modeled by 1,000 series of information and compare statistic of effectiveness was One-way Multivariate Analysis of Variance (One-way MANOVA). The results were found :

FML and RML methods most effective in estimate of fixed effects and EB method is most effective in estimate of random effects, The test at significance level 0.01. for the FML with RML methods are effective in estimate of fixed effects and random effects, differences are statistically non-significant at the 0.01. for population distributions were left skewness and kurtosis lower than normal and right skewness and kurtosis higher than normal.

สวพ.

มทร.ส

วรรณภ

"!7

"$ 0

1 "6ttttttttttttttttttttttttttttt. 1

./$% C,.BC(tttttttttttttt 1

#:. ,กttttttttttttttttttt.. 4

,,#,กttttttttttttttttttttt.. 5

"-!- tttt..tttttttttttttt................. 5

. &)! กกt...tttttttttttt.. 6

2 ก)%-!&$ก$&0tttttttttt...t..ttttttt 7

. #./กกก (-( tttttttttt 7

$กกก (-( tttttttttttttt... 8

ก (-( ก 2 ttttttttttttt.. 9

ก (-( ก 3 ttttttttttttt.. 16

.BC(กกก (-( ttttttttttt................. 21 #,4. -#tttttttttt............... 27 4ก. -#'ก (-( ttttttt... 32 !ก,tttttttttttttttttttttt.. 44

3 6ก-!&ttttttttttttttt..ttttt............... 50 ก$+ก!%tttttttttttttttttttt. 50 , #'กก!%ttttttt...ttttttttt 52

สวพ.

มทร.ส

วรรณภ

"!7 ()

"$ 0

4 1%ก %tttttttttttttttttttttttttt 55

#! 1 ก.!. !4*-,4ก. -# 'ก (-( 1ก%#,%ก ก. )ก ก$ก$$D$% &#ก.ก#tttttttt.

55

#! 2 ก.!. !4*-,4ก. -# 'ก (-( 1ก%#,%ก ก. )ก ก$ก$$,$% &ก.ก#tttttttt..

63 5 1% &1% )%0)t.ttttttttttttttt. 71

.+%กttttttttt..tttttttttttttt 71

*.+%ttttt..ttttttttttttttttttt.. 73

,$ tttttttttttttttttttttttt.. 74

"กttttttttttttttttttttttttttttt.. 76

สวพ.

มทร.ส

วรรณภ

"!7

0

1 ,4ก. -#'ก (-( 1ก%#,%ก ก. )กก$ก$$D$% &#ก.ก#tttttttttttttttttttttt...

56

2 $ก ($..-($!-1.! ,4ก. -#'ก (-( 1ก% #,%ก ก. )กก$ก$$D$% & #ก.ก#tttttttttttttttttttttttttt..

60 3 $ก ( Univariate Tests -1.!,4ก

. -#'ก (-( 1ก%#,%ก ก. )กก$ก$$D$% &#ก.ก#tttt.....

61 4 $ก (4 Scheffe -1.!,4ก

. -#'ก (-( 1ก%#,%ก ก. )กก$ก$$D$% &#ก.ก#ttttt..

62

5 ,4ก. -#'ก (-( 1ก%#,%ก ก. )กก$ก$$,$% &ก.ก#tttttttttttttttttttttt..

64

6 $ก ($..-($!-1.! ,4ก. -#'ก (-( 1ก%#,%ก ก. )กก$ก$$,$% &ก.ก#tttttttttttttttttttttt..

68

7 $ก ( Univariate Tests -1.!,4ก . -#'ก (-( 1ก%#,%ก ก. )กก$ก$$,$% &ก.ก#ttttt

69

สวพ.

มทร.ส

วรรณภ

"!7 ()

0

8 $ก (4 Scheffe -1.!,4ก . -#'ก (-( 1ก%#,%ก ก. )กก$ก$$,$% &ก.ก#tttt......

70

9 $4ก. -#!( '$#% :กtttttt 73

สวพ.

มทร.ส

วรรณภ

"!7

0

1 กx$-4 (+%y!4G!ก)#"#ก : !"3zก,ก' 1 &ttttttttttt.

10

2 กx$-4 (+%y!4G!ก)#"#ก : !"3zก,ก&%ก%,: ! "3zก(SES )ttttttttttttttttttttttt..

11

3 กx$-4 (+%y!4G!ก)#"#ก : !"3zก,ก' 2 &ttttttttttt.

12

สวพ.

มทร.ส

วรรณภ

1

(Hierarchical linear models: HLM) $%ก ''ก()*+,ก(-.ก/ ก()*+ก01+)ก234ก( )*+,-(/5-6(4 78ก()*+,0)),+ 9.10ก(ก:)$.';12,016:ก<= <7ก: :)=(8ก2>23)7=(=()?(;23)7=(=()(:) (variance or covariance components models) =(8,CD7E: (random coefficients models) G?E(8 (multilevel linear models)2,CGE:782,CGI(mixed-effects and random-effects models) 787I(mixed linear models) + =Lก(M0?.1>27I 9.1>++7)3*กก($$2+6(5 (Ayesha Nneka Delpish. 2006) ?(')*+0 *8(0+ก): ก()3(8?4G?E(8 (multilevel analysis) 9.18,2$.3((78C((6>2>2%,0103)992 0ก(*=L?:)+,0192ก=L > (Hierarchy) ก:)3;2?:)+?+W ?:)+'(80+)ก$%ก*กE:>)+กG;12=L(8,01%>. :',(/,?:)+,01+:2+,01E3;2 Gก9.1()ก2+%:'7Iก 7Iก()ก2+%:'(/, ?((/,()ก2+%:'32E6?ก(( =L6 >2%?:003)GC4ก=L3(( 3((>2>2%:0*.?8,01*8',33ก()3(8?4G?E(8 (Multilevel Analysis) ?(ก()3(8?4G?E(80ก( '2+:7G(:?+'ก(M0,01>2%=L3(( 7,ก()3(8?4ก($$2+ (Regression Analysis) 7,1)<= ;12*ก($7ก=Z[?3)IG 3 =(8ก( 3;2 3)220+>2ก((E=>(8 (Aggregation Bias) 3)IG'ก(=(8M3)33;126(5(Misestimated Standard Error) 783)=L))CGCE4>2=(8,CDก($$2+ (Heterogeneity of Regressions) (Randenbush and Bryk. 2002, p 99-100; -(+ ก[*)0. 2550, ? 68-69)

;12*กก()3(8?4G?E(8<0ก( <==(8+Eก64''?+>) *.<0ก(Gg'6:W +hG8ก(=(8M3:G(62(4 786)$6,01''ก(,2652+:6:2;1276:กi0>2* กก01+)ก3)992'ก(3 )M 78;120ก( 32G)62(4>:)+'

สวพ.

มทร.ส

วรรณภ

2

ก()3(8?46:2*.<0ก(Gg=(7ก( (i*(%= ,,01' ?()3(8?4G?E(8+6( : =(7ก( HLM 9.1($''ก()3(8?4<,(%=76(78<:'6( (Raudenbush et al. 2000) =(7ก( MIXOR (Hedeker and Gibbons. 1996) =(7ก( MLWIN (Rasbash et al. 2000) =(7ก( VARCL (Longford. 1990) 78=(7ก( BUGS (Spiegelhalter et al. 1994) =L6 ?(=(7ก( (i*(%=,$6,1)<=,0103 1,01''ก()3(8?4G?E(8 3;2 =(7ก( SAS Proc Mixed (Littell et al. 1996) 78=(7ก( SPSS 9.1Gg>.'?:+<:=(กt'ก( <='7G(:?+กก (Hox. 2002)

=Z[?,01 3[2+:ก'ก()3(8?4G?E(8 (Multilevel Analysis) 7):*80=(7ก( (i*(%=:)+'ก()3(8?4 3;2 3)220+>26)=(8M3:G(62(4,2,CG73,01 (fixed effects) 782,CG7E: (random effects) +)C0ก(=(8M3:G(62(4+,1)<=*803EM6=L6)=(8M,01<:220+ <:):*8=(8M)+)C0ก 22+,01E7C(((Ordinary Least Squares: OLS) )C0ก 22+,01E7+,1)<=(Generalized Least Squares: GLS) 78)C0w)83):*8=L%E(Maximum Likelihood: ML) (Van der Leeden, Busing and Meijer. 1997 ; Maas and Hox. 2001) +กE:6)2+:620>'?[:G2 76:;12<:=L<=6>26ก;26*80I, '?6)=(8M3:G(62(478ก(,2ก:)<:($3)3E3)33;12=(8w,,01 1 < :ก(-.ก/>2 Maas and Hox (2004) <-.ก/>6)2+: ?(ก()3(8?4G?E(8 ก(M0 2 (8 9.1'ก()*+3(0=(8M3:G(62(4+')C0 Restricted Maximum Likelihood (RML) +0;12<>ก(* 2>2% 3;2 1) * )กE:(Number of groups) 7:=L 3 > 3;2 30, 50, 78 100 2) >>2กE: (Size of groups) 7:22ก=L 3 > 3;2 5 , 30 78 50 3) 3:=(8,CD?GC4w+' (Intraclass Correlation Coefficient) 7:22ก=L 3 > 3;2 0.1(>iก) 0.2 (>ก) 78 0.3 (>'?[:) +06)7=(2(8'(8,01 1 78(8,01 2 (88 1 6)7=( Iก(-.ก/ G): ก(=(8M3:2,CG73,01 3;2 3:*E67ก(Intercept) 783:3) (Slope) 03)220++h01+<:ก(2+8 0.05 7803)220+%E;12 * )กE:,:ก 30 >>2กE:,:ก 5 783:=(8,CD?GC4w+',:ก 0.30 +*8ก3)220+(2+8 0.30 2ก*ก07)*กก(-.ก/>2 Van der Leeden (1997) G): $>2%<:=L<=6>26ก;26ก01+)กก(7*ก7*7=ก6 78>6)2+:<:'?[:G2*80, '?3:3)33;1203)220+ 78*กก(-.ก/>2 Mok(1995) Van der Leeden 78 Busing (1994) 78 Cohen (1998) '?Iก(-.ก/232ก 3;2 3)7:+ >26)

สวพ.

มทร.ส

วรรณภ

3

=(8M3:782 *ก(,2*8%<>.2+%:ก* )กE:(number of groups) กก):* )E336:2กE:(number of individuals per group) 78)C0 RML *803)220+61 ก):)C0 Full Maximum Likelihood (FML) (Longford. 1993) +hG8ก(M0,01ก'76:8กE:,:ก (equal group sizes) ก(=(8M3:+)C0 RML *8'?3:=(8M,0103)7:+ กก):)C0 FML (Searle, Casella and McCulloch. 1992) 76:',=6;12)3(8?4>2%+'=(7ก( (i*(%=:)'?[:7)3:=(8M'(8,01 2 *876ก6:ก2+กG0+,-+'6 7?:,012(Browne. 1998) +)C0 FML 0>2<=(0+'ก( <=' 3;2 3)+E:+ก'ก(3 )M2+ก): 783:=(8,CDก($$2+*8'Zก43):*8=L%E(likelihood function) ,? ?(ก(=(8M3:3)33;12>2:)3?;2(residual error) >2ก()3(8?4'(8,01 1 +,1)<=*803)7:+ % *กก(-.ก/>2 Busing (1993) 78 Van der Leeden 78 Busing (1994) +'ก(* 27=Z[?(simulation) G): ก(=(8M3:3)7=(=() +')C0ก 22+,01E7+,1)<=(Generalized Least Squares : GLS) , '?<3:=(8M,0103)7:+ 2+ก):ก(=(8M)+)C0w)83):*8=L%E(Maximum Likelihood : ML) 2ก*ก07)+G):ก(=(8M3:3)7=(=()'(8กE:*803)7:+ กi6:2;120* )กE:กก): 100 กE:>.<= 6:2 Maas 78 Hox (2001) <-.ก/ G): ;12* )กE:=(8M 30 กE: ก(=(8M3:+')C0 RML *8'?3:=(8M,013:2>7:+ 76:;12* )กE:2+กW ก(=(8M3:+)C0ก:)*8'?3:=(8M,0161 กก):3:,01=L*( +)C0ก(=(8M3:G(62(4'ก()3(8?4G?E(8 ก(M0 2 (8 78 3 (8 0?+)C0,,012>.G;12=L7)3'ก(Gg6:2<= 78,010ก( <=>0+=L=(7ก(,32G)62(4,010ก( <='2+:7G(:?+ )C0 FML 78)C0 RML =L)C0ก(=(8M3:G(62(4,010>26ก;26ก01+)ก(7*ก7*7=ก678กE:6)2+:620>'?[: ก(,265,$6>2ก()3(8?4G?E(8$0ก(G1>6)2+:',Eก(8 6)=(8M3: 783:3)33;126(5กi*803)$%ก62%>. 78*8%:>%:ก(7*ก7*7=ก66,~/t0>0* กก (Central limit theorem) 76:*กก(-.ก/>2 Kreft (1996) ก01+)กก(ก ?>6)2+: 78< 2=Lกt2+::+(rule of thumb) ?(ก()3(8?4G?E(8 ก(M0 2 (8 3;2 กt 30/30 + Kreft (1996) ก:)): G;12'?ก3)7:+ 'ก()3(8?4G?E(8* )กE:(number of groups) ?(;2?:)+6)2+:,01''ก()3(8?4'(8,01 2 3)(02+:2+ 30 กE:>.<= 78620* )

สวพ.

มทร.ส

วรรณภ

4

E336:2กE:(number of individuals per group) ?(;2?:)+6)2+:'(8,01 1 ' 1 กE:620ก2+:2+ 30 >.<= 9.1ก(ก ?>6)2+:6)C0>2 Kreft (1996) +<:($'=LกM4<,? +*กก(-.ก/>2 Maas and Hox (2004) <-.ก/ก01+)ก3)7ก(:>2ก(=(8M3:G(62(4'ก()3(8?4G?E(8 ;12กE:6)2+:0>iก 'ก(-.ก/3(0=Lก(-.ก/'ก(M0 2 (8 ?(ก(=(8M3:G(62(4 783)33;126(5')C0 Restricted Iterative Generalized Least Square(RIGLS) Iก(-.ก/G): ;12<>'ก(* 27=Z[?<:0Iก(8,6:23)$%ก62>2ก(=(8M3:2,CG73,01 (fixed effects) 76:, '?ก((:)3);12178ก(,2+ 3[,$6>22,CG7E: (random effects) '(8,01 2 <:$%ก62 G(8):'ก(* 2,01* )กE:61 E 3;2 30 0$. 9% ,01ก(=(8M3:2,CG7E:'(8,01 2 2+%:2ก:)3);121,01 95% กt2+::+ (rule of thumb) >2 Kreft (1996) G*(Mก(=(8M3:2,CG73,01 782,CG7E:'(8,01 1 <:<3 .$.ก(,2+ 3[>22,CG7E: (random effects)'(8,01 2

*กก(-.ก/)*+,01ก:)>6 G): >6)2+:'76:8(80I6:2=(8,CwG>2)C0=(8M3:G(62(4+)*+ก:)=Lก(-.ก/ก(M0 2 (8=L :)'?[:G;123?>6)2+:,01?8 *ก=Z[?,01ก:) *., '?I%)*+03)'*,01*8-.ก/=(0+,0+=(8,CwG>2)C0ก(=(8M3:G(62(4'ก()3(8?4G?E(8,01'+,1)<='=(7ก()3(8?4G?E(8 3;2 )C0 FML )C0 RML 78)C0 Empirical Bayes (EB) 9.1=L7)3,01<(3)'*'=Z**E +ก(* 2>2%';12<>,01กE:6)2+:0>iก 78=(8ก(<:<0ก(7*ก7*7=ก6 G;12'?<(,-ก01+)ก)C0ก(=(8M3:G(62(4,010=(8,CwG;12กE:6)2+:0>iก78>2%0ก(7*ก7*7<:=ก66:2<= ก!"# 1. G;12-.ก/=(8,CwG>2)C0ก(=(8M3:G(62(4'ก()3(8?4G?E(8 ;12กE:6)2+:0>iก 2. G;12=(0+,0+=(8,CwG>2)C0ก(=(8M3:G(62(4'ก()3(8?4G?E(8;12กE:6)2+:0>iก

สวพ.

มทร.ส

วรรณภ

5

ก!"# ก(-.ก/=(8,CwG>2)C0ก(=(8M3:G(62(4'ก()3(8?4G?E(8;12กE:6)2+:0>iก ก(* 27=Z[? +ก ?>2>6'ก()*+ 0 1. =(8ก(,01-.ก/=(8ก2)+6)7=(,010ก(7*ก7*7<:=ก6 * ) 2 ก/M8 3;2 =(8ก(,010ก(7*ก7*79+783):61 ก):=ก6 78=(8ก(,010ก(7*ก7*7>)783):%ก):=ก6 +ก ?3:3)(skewness) 783:3):(kurtosis) 0 $ % $&'$ 2.60 4.00 -0.50 (-0.50, 2.60) - 0.50 - (0.50, 4.00)

2. ก ?6)7=(2(8 (88 1 6)7=(',Eก(8 3. ก ?3:=(8,CD?GC4w+'(Intraclass Correlation Coefficient) * ) 2 > 3;2 0.01 78 0.20 4. ก ?>กE:6)2+: 0

(8,01 1 * ) 3 > 3;2 5, 15 78 25 (8,01 2 * ) 3 > 3;2 5, 15 78 25 (8,01 3 * ) 3 > 3;2 5, 15 78 25

5. )C0ก(=(8M3:G(62(4,01 -.ก/=(0+,0+ก =(8ก2)+ )C0 FML )C0 RML 78)C0 EB 6. '76:8$ก(M4* 2E>2%* ) 1,000 E +',3326 3(4 (Monte Carlo Technique) !#() *)

!+!,)!+ก-$ ?+$. )C0ก(=(8M3:G(62(4,01'?3:3)220+61 E$;2):0=(8,CwG%E

สวพ.

มทร.ส

วรรณภ

6

$ # ?+$. 3:3)33;12*ก3:G(62(4>23:$6,01=(8M< 9.1($>0+=Lก( 3;2 ( ) θθθ −= ˆ)ˆ( EBiased !+ Full Maximum Likelihood (FML) ?+$. ก(=(8M3:G(62(4(:)ก(8?):2,CG73,01 (Fixed Effect) 782,CG7E:(Random Effect) 78 <=7,3:'Zก43):*8=L%E(Maximum Likelihood Function) !+ Restricted Maximum Likelihood (RML) ?+$. ก(=(8M3:G(62(4+(1*กก(=(8M3:2,CG7E:(Random Effect) w+?*., ก(=(8M3:2,CG73,01 (Fixed Effect) 78 <=7,3:'Zก43):*8=L%E(Maximum Likelihood Function) !+ Empirical Bayes (EB) ?+$. ก(=(8M3:G(62(4)+)C0ก 22+,01E(Least Square Method) 78$:) ?ก)+3:3),01+ (Reliability) $!+!G)+,#HIJ (ICC) ?+$. 3::)3)7=(=()(8?):ก3:3)7=(=(),? ก$#$' Mก ?+$. ก(ก ?กE:6)2+:,01<:=L<=6กt2+::+ (rule of thumb) >2 Kreft (1996) 3;2 >6)2+:'76:8(82+ก): 30 ?:)+ &#I'$"N'%"กก!"# 1. <,($.=(8,CwG>2)C0ก(=(8M3:G(62(4'ก()3(8?4G?E(8 ;12กE:6)2+:0>iก 2. =L7),'?ก$6 ก)*+ 78I%'*<=(=(E?(;2Gg)C0ก(=(8M3:G(62(4,0103)7ก(: (Robust) ;12กE:6)2+:0>iก)C02;1 W 6:2<= 3. =L,;2ก'?ก)*+($;2ก$6,010=(8,CwG%ก):<=)3(8?42*8, '?Iก()*+03)$%ก62ก+1>.

สวพ.

มทร.ส

วรรณภ

2

ก ก กก กก !" #$ก%!& %'ก ()*+!&, *กก-%+!&$ก$&* !,. 1. !1ก$&ก!"ก !" 2. - ก$&ก!"ก !" 2.1 ก !" ก 2 !" 2.2 ก !" ก 3 !" 3. 45ก$&ก!"ก !" 4. "! 5. กก !" 6. +!&$ก$&*

1. กกก !" #$ ก !"(Multilevel Analysis) $*ก!G!.- .. 1962 -%$กIJ*-%&. .. 1983 1*, L &++กก$ก$&ก!"ก !" " กI,J*%ก%&JL &J#$ก&ก$-กก!, ก+!&!+)*+!กก!J#$ ML %J* !"N(Multilevel Linear Models) (Mason et al. 1983 and Goldstein. 1995) *J& +&ก ML % %(-%L % %-""N (Mixed-effects Models and Random-effects Models) (Elston and Grizzle. 1962; Laird and Ware. 1982; Singer. 1998) *` &ก ML %! aกb b&-""N (Random-coefficient Regression Models) (Rosenberg. 1973; Longford. 1993) -%b+&ก ML %ก"-N (Covariance Components Models) (Dempster, Rubin and Tsutakava. 1981 ; Longford. 1987)

สวพ.

มทร.ส

วรรณภ

8

-I!"J#$$กI,J*&-%& # M N (Hierarchical Linear Models) #$+ก- *'b%!กL**)%$m*ก!&) L &4++"!ก !".ก', *กI,&กJ*&ก*,+1ก$&ก!"ก!Gกกก(studies of growth) %ก (organizational effects) -%ก!+!& (research synthesis) 1* (Raudenbush and Bryk. 2002) #$+กก !", *กI,J*&-%& +, *ก!G *q L &rก -%!b$J*ก "`&#$-ก'*+Iก! ก$&ก!"m!"m*กI -%#$กI*J&ก+ก!GL-กI'+) !.$J*I!" !"L &r J L-ก HLM m$bJ*ก, *!.)-""J*-%,J*J* (Raudenbush et al. 2000) L-ก MIXOR (Hedeker and Gibbons. 1996) L-ก MLWIN (Rasbash et al. 2000) L-ก VARCL (Longford. 1988) -%L-ก BUGS (Spiegelhalter et al. 1994) 1* I!"L-กI'+)b!$,$I!$$J*ก !" # L-ก SAS Proc Mixed (Littell et al. 1996) -%L-ก SPSS m$!G.&!,กzกI,J*-%&ก!ก (Hox. 2002) 2. $กกก !" #$ 4++"!ก กb b&-" " !" 1$ )* +! ก& -%& !ก+!&&*ก&กJ#$$-กก! J L %! a-""(random coefficient models) (de Leeuw and Kreft. 1986 ; Longford. 1993) L %ก"-(variance component models) (Longford. 1987) (hierarchical linear model) (Raudenbush and Bryk. 2002) L % %-""( (mixed model) (Littell, Milliken, Stroup and Wolfinger. 1996) -%L % !" (Multilevel Model) (Snijders and Bosker. 1999 ; Heck and Thomas. 2000 ; Hox. 2002) )-""$ก%!. -*$+-%*ก'# ก*)%$L*JJ!.!$ I!"กI*+ก$&ก!"ก !"+#.`+กกกb b& (Regression Analysis) -%ก- (Analysis of Variance) L &4++"!.ก !"b*-"L**)%-"ก1 2 # ก !" ก 2 !" -%ก !" ก 3 !" L &&%& !.

สวพ.

มทร.ส

วรรณภ

9

2.1 ก !" #$ ก% 2 $ ก !"+$*+กก+!! ก*กก

!- !" & ()*+!&+I&!- 1 !- # (%! aก&J -%!- # b`ก+!ก& m$+ 1 L& L &b&กb b&, * !.

iii rXY ++= 10 ββ L & iY # (%! aก&J 0β # + $*ก! ก!"-ก Y m$ก'# (%! ar%$& !ก&$ i #$ iX 1 0 1β # J! (Slope) 1$ "&b!-( iX ) #$%$&, 1 & +I* iY %$&, 1β & ir # % %#$(residual error) m$*ก%"#.**ก-+ก-+-""ก r%$&ก!" 0 -%-ก!" 2σ L &b&ก- !! (%! aก&Jก!"b`ก+, * ! 1

สวพ.

มทร.ส

วรรณภ

10

&" 1 ก' $"(! )*+(,ก-%.!ก /.01กก2 1 3

b*!"ก%!- +J&I* 0β (intercept) &&$.ก %"!-(b`ก+) *&r%$&b`ก+ -% : XiX − -%Iก&ก, * ! 2

(%! aก&

b`ก+

สวพ.

มทร.ส

วรรณภ

11

1β -2 -1 0 1 2

&" 2 ก' $"(! )*+(,ก-%.!ก /.01กก3$ก$)4/.01ก(SES )

ก$Iกกb b& 2 L& m$+กb b& 2 ก #$I

*b b&-%L&&ก,* &ก! ! 3 +I* 0β (intercept) # r%$&(%! aก&J&ก&$. #$J! (Slope) &!,%$&-%

(%! aก&

b`ก+

สวพ.

มทร.ส

วรรณภ

12

111011 )( iii rXXY +−+= ββ

212022 )( iii rXXY +−+= ββ 12β -2 -1 0 1 2

&" 3 ก' $"(! )*+(,ก-%.!ก /.01กก2 2 3

+ก 3 " L&$ 1 -%L&$ 2 $$-กก!&) 2 ' # 1) L&$ 1 +r%$&(%! aก&J)กL&$ 2 L &+, *

11β

02β

(%! aก&

b`ก+

01β

สวพ.

มทร.ส

วรรณภ

13

+ก 0201 ββ > 2) b`ก++ %(%! aก&JL&$ 1 $IกL&$ 2 L &+, *+ก 1211 ββ < -b*Iกก!! (%! aก&Jก!"b`ก+Jก J L& L & j L& +, *กb b&!. j ก #

111011 )( iii rXXY +−+= ββ

212022 )( iii rXXY +−+= ββ . . .

ijijjij rXXY +−+= )(10 ββ L &+กก ijr +ก-+ก-+-""ก--%L& ก! ( ),0(~ 2σNrij ) b*++กก " -%L&+ j0β -% j1β L &ก !" !"$ 2 !. +I.,1!- m$+!- !"$ 2 1!&ก !"$ 2 !- 1 ! # !ก! L& - *& jW L &

*1 1 b*1L&!ก! %ก(catholic) -%1 0 #$1L&!ก! !` (public) m$b*J!1"ก- r%$&(%! aก&JL&!ก! %ก+)กL&!ก! !` -b*J!1%" - (%! aก&JL& %ก+$IกL&!ก! !` m$b&กb b& !"$ 2 , * !. jjj uW 001000 ++= γγβ jjj uW 111101 ++= γγβ #$ 00γ # r%$&(%! aก&JL&

สวพ.

มทร.ส

วรรณภ

14

!ก! !`(public) 01γ # -ก(%! aก&J

L &r%$&L&!ก! %ก(catholic) -%L& !ก! !`(public)

10γ # r%$&b`ก+$(%! aก& JL&!ก! !`(public)

11γ # -กb`ก+$(%! aก &JL &r%$&L&!ก! %ก (catholic) -%L&!ก! !`(public)

ju0 # % %#$(residual error) # % j0β

ju1 # % %#$(residual error) # % j1β

!!. b&กก !" ก 2 !" , * !.

ijijjij rXY ++= 10 ββ

jjj uW 001000 ++= γγβ jjj uW 111101 ++= γγβ b*Iก !ก%&ก!, * !.

ijijjjjjij rXuWuWY ++++++= )( 1111000100 γγγγ

ijjjijjijijj ruuXWXXW ++++++= 0111100100 γγγγ

+กกb*,!-!. !"$ 1 -% !"$ 2 b&ก, * !.

สวพ.

มทร.ส

วรรณภ

15

ijj000ij ruY ++γ= m$ก.&ก)-"",#$,&")# Null Model L &ก !"+$*+กก Null Model #$$+, *"-% !"-ก$+!-Iก&ก#, L &! -&J!. b+, *+ก! a!! &J!.(Intraclass correlation coefficient : ρ ) m$I+กก-&ก- ijY !.

)( ijYV = )( 000 ijj ruV ++γ

)()()( 000 ijj rVuVV ++= γ

22 ijroju

σσ +=

+กก-&ก- ijY +ก" *&- !"$ 1 -%

- !"$ 2 b- ! - !"$ 1 -% !"$ 2 , * #

2

r

2

u

2

r

1

ijoj

ij

σ+σ

σ=ρ

2

r

2

u

2

u

2

ijoj

oj

σ+σ

σ=ρ

I!"ก-"",#$,&") (Fully Unconditional Model) 1ก#$"(!-!. 2 !" # !"!ก& -% !"L& (!--% !"b "&, *L &! a!! &J!. -I!")-""ก&#$, (Conditional Model) +กI!-*,ก#$+! -$b "&, *L &!- !ก% L & !"$ 2 +I+ ! -ก

สวพ.

มทร.ส

วรรณภ

16

(Intercept) -%J! (Slope) !"$ 1 ,1!- -%I!-*,)-""#$ "&! aกb b& !ก%

2.2 ก !" #$ ก% 3 $ ก !" ก 3 !"!. 1ก&&- ก$&ก!"ก !"*"%L**)%#$% ( % $ก +กก(%* !"##$* %*ก!"45+!& -ก !" ก 3 !"!. +m!"m*กก #$+กI+ ! -ก (intercept) -%J! (slope) !"$ 2 1!- !"$ 3 I!"!.ก+#ก!"ก 2 !" # !.-ก+)-"",#$,&") (Fully Unconditional Model) #$ )(!-- !" -%!.$ 2 +)-""#$, (Conditional Model) # กI!-*,)-"" L &&%& !. 8 1 9 :);:)9%! (Fully Unconditional Model) )-""ก 3 !"&& # ก-"",#$,&")#ก$&!,, *I!-*,)-"" m$&กก& ก Null Model *กก4++!&$(%(%! aก&L &J*ก !" ก 3 !" L & !"$ 1 # !ก& !"$ 2 # *& -% !"$ 3 # L& 9 $ก(Child-Level Model) m$1)-""(%! aก&!ก&-%L &ก" *&r%$&*&"กก!"% %#$-"" L &&1ก, * !. ijkjkijkY επ += 0 #$ ijkY # (%! aก&!ก&$ i *&$ j -%

&L&$ k jk0π # r%$&(%! aก&*& j &L& k ijkε # %!ก&#"$&"-!ก&

$ i *& j &L& k ก!"r%$&*&

สวพ.

มทร.ส

วรรณภ

17

m$ก'#% %#$!$ L &*ก%"#.** ก-+ก-+-""ก r%$& ก!" 0 -%- ก!" 2σ

L & i # !ก&, j # *& -% k # L& i = 1,2,, jkn (!ก&*& j &L& k)

j = 1,2,, kJ ( *&&L& k) k = 1,2,,K (L&) 9 $ (Classroom-Level Model) m$+I r%$&-% *&1!- ( jk0π ) !"$ 2 L &&1ก, * !. jkkjk r0000 += βπ

#$ k00β # r%$&(%! aก&L& k

jkr0 # %*&#"$&"r%$& !" *&$"$&",+กr%$&L& m$ก' # % %#$!$ L &*ก%"#.**ก -+ก-+-""ก r%$& ก!" 0 -%-ก!"

πτ 9 $3(School-Level Model) m$)-"" !"$ 3 .1ก- (!-L& L &+Ir%$&-%L&( k00β ) 1!- !"$ 3 b&1ก, * !.

kk u0000000 += γβ

#$ 000γ # r%$&(%! aก&กL& (grand mean)

สวพ.

มทร.ส

วรรณภ

18

ooku # % !"L&#"$&"r%$&-% L&$"$&",+กr%$&(grand mean) m$ก' # % %#$!$ L &*ก%"#.**ก -+ก-+-""ก r%$& ก!" 0 -%-ก!"

βτ ก ก (Variance Partitioning) ก-&ก- 3 !" # ก-"-!- )( ijkY ก1 3 # - !"$ 1 #-!ก&&*&

)( 2σ - !"$ 2 #-*&&L& )( πτ -%- !"$ 3 #-L& )( βτ #$I,! &*& *&L&!. -%L& &ก ! a!! &J!. (Intraclass correlation coefficient : ρ ) L &bI, * !.

βπ ττσ

σρ

++=

2

2

1 # ! -&*&

βπ

π

ττσ

τρ

++=

22 # ! -*&

&L&

βπ

β

ττσ

τρ

++=

23 # ! -L&

8 2 9 );: (Conditional Model)

ก-"",#$,&") (Fully Unconditional Model) 1ก#$"(!-!. 3 !" # !"!ก& !"*& -% !"L& L & (!--% !"b "&, *L &! a!! &J!. -I!")-""ก&#$, (Conditional Model) +กI!-*,ก#$+

สวพ.

มทร.ส

วรรณภ

19

! -$b "&, *L &!- !ก% I!" !"$ 2 -% !"$ 3 +I+ ! -ก(Intercept) -%J! (Slope) ,1!--%I!-*,)-""#$ "&! aกb b& !ก% !!.b)-""&#$,-% !", * !. 9 :2$ 1 &-%*&!.4กJ!(%! aก&+ก" *& !- !"!ก&"กก!"% %#$ b&1 ก, * !. ijkpijkpjkijkjkijkjkjkijk aaaY εππππ +++++= ...22110 #$ ijkY # (%! aก&!ก&$ i *& j -%

&L& k jk0π # + ! -ก(Intercept) *&$ j &L& k pijka # !- !"$ 1 $J*ก "&(%! a

ก& L &!- p ! ; p = 1,2,,P pjkπ # J!(Slope) #! aกb b& !"$ 1

m$- b %!-(%! aก &!ก&*&$ j &L& k

ijkε # %-"" !"$ 1 #"$&"- !ก&$ i *&$ j &L&$ k $"$&", +ก-&ก m$ก'#% %#$!$ L & *ก%"#.**ก-+ก-+-""ก r%$& ก!" 0 -%-ก!" 2σ

9 :2$ 2 +I! aกb b&)-"" !"!ก& ( !"$ 1) ก" *&! -ก (Intercept) -%J! (Slope) ,1!- !"$ 2 # !"*& L &b&ก, * !.

สวพ.

มทร.ส

วรรณภ

20

pjkqjk

pQ

Qpqkkppjk rX ++= ∑

=10 ββπ

#$ kp0β # ! -ก (Intercept) L& k #r%$&-

(%! a-%L&

qjkX # !- !"$ 2 $J*ก "& %

*& )( pjkπ L &!- q ! ; Q = 1,2,, pQ

pqkβ # J!(Slope) #! aกb b& !"$ 2 m$- b %!- % *& )( pjkπ

pjkr # %-"" !"$ 2 #"$&"! a *&$ j &L&$ k $"$&",+ก&ก )-"" !"*& m$ก'#% %#$!$ L &*ก%"#.**ก-+ก-+-""ก%&!- (Multivariate Normal) r%$& ก!" 0 -%- -%-ก!

9 :2$ 3 ก !" !"$ 3 +I! aกb b&)-"" !"*& ( !"$ 2) ก" *&! -ก (Intercept) -%J! (Slope) .,1!- !"$ 3 # !"L& L &b&ก, * !.

pqksk

pqs

spqspqpqk uW ++= ∑

=10 γγβ

#$ 0pqγ # ! -ก (Intercept) กL&#r%$&

-(%! aกL&(grand mean)

skW # !- !"$ 3 $J*ก "& %

สวพ.

มทร.ส

วรรณภ

21

L& )( pqkβ L &!- s ! ; s = 1,2,, pqS

pqsγ # J!(Slope) #! aกb b& !"$ 3 m$- b %!- % L& )( pqkβ

pjku # %-"" !"$ 3 #"$&"! a

L&$ k $"$&",+ก&ก)-"" !" L& m$ก'#% %#$!$ L &*ก%"#.* *ก-+ก-+-""ก%&!- (Multivariate Normal) r%$& ก!" 0 -%--%- ก!

3. VW กกก !" #$ 3.1 VW กก(ก%)"!

ก! aกb b&ก !"4++"! # +1) (Maximum Likelihood: ML) (Hox. 2002) -ก' ก #$ก J กI%!*&$ -""!&!$,(Generalized Least Squares: GLS) -""ก!$,(Generalized Estimating Equations: GEE) -"" Bootstrapping -% ก-"""& (Bayesian methods) m$" ก1&กI- -&!,กI,+"#&กJ*L-กI'+) L &-% ก'* -%*+Iก! -กก!, L &&%& !.

1. +1) (Maximum Likelihood: ML) +1) 1 ก$กI,J*L-กI'+)ก$&ก!"ก !"ก$ !.#$+ก +1) "!ก1!$ # -ก(robust) (efficient) -%-"!&(consistent)-ก%!&* 5 +1) +-กกb)ก%%&*ก%"#.*ก$&ก!"ก-+ก-+% %#$ กL & .+J*4กJ!+1) (likelihood function) L & +1) $J*ก !" +-"ก1 2 # Full Maximum Likelihood (FML) m$ .+

สวพ.

มทร.ส

วรรณภ

22

! aกb b&-%ก"-(variance components) *ก! L &J*4กJ!+1) (likelihood function) Restricted Maximum Likelihood (RML) +ก"-(variance components)กL &J*4กJ!+1) (likelihood function)-%+Iก! aกb b& RML +&$Iก FML (Longford. 1993) L &rก$Jก-%ก%ก! (equal group sizes) กL & RML +*$-&Iกก FML (Searle, Casella and McCulloch. 1992) -"!#$*)%L &J*L-กI'+)5-%* !"$ 2 +-กก!*&ก&&I-$(Browne. 1998) L & FML +*, *&"กI,J* # &&กกI*&ก -%! aกb b&+J*4กJ!+1) (likelihood function) !. I!"กL & +1) +$*+ก*L-กกI $* ! !",+Iก!"$*L &Iกm.I -%I$, *&"&"ก!"$I!.$(b*ก ก%$&-%*&ก - !.#%)*)ก1$ -ก !"L &J*L-กI'+)+45#$+I"กm.Im$กก$กI ,*-%*&!,, *$ -%45ก&$ # กL &J* +1) (Maximum Likelihood: ML) !&* 5 (Hox. 2002)

2. กI%!*&$ -""!&!$, (Generalized Least Squares: GLS) กL &J* กI%!*&$ -""!&!$, (Generalized Least Squares: GLS) #.`+ก +1) L &กI +Iกm.I m$ ก *& กI%!*&$ -""!&!$,+ก%*&ก!"ก *& +1) m$+*$b)ก*ก'#$!& 5ก "! .&!,J $ $ -bI, * 'ก FML L &b$+J*$, *+ก +1) 1+ $*กI J กL & +1) -%*&!,, *$#$+ก+I"กm.I,& b$+I .,J&ก#$-ก*45 !ก% -+กกก+!&L &J*ก+I%-""45 " ก *&กI%!*&$ -""!&!$,+

สวพ.

มทร.ส

วรรณภ

23

$Iก +1) -%% %#$`$IL & กI%!*&$ -""!&!$,1#.`*"$&",,, **$-*+ (Kreft. 1996) m$L &!$, +1) +*$b)ก*กก 3. ก-""!&!$, (Generalized Estimating Equations) กL &J*ก-""!&!$,(Generalized Estimating Equations) L &+$*--%- %L &+ก% %#$ (residuals) m$bI, * 'ก FML L & ก-""!&!$,%!+ก$, *I--%--%*+J* กI%!*&$ -""!&!$,ก! aกb b& L & ก-""!$,+กI,J*L-ก HLM (Bryk, Raudenbush and Congdon. 1996) ก L &J*ก-""!&!$,+ -ก+ก ก-""+1) #$)-""!! ,1*(nonlinear) L &+กกก Goldstein (1995) #$&"&" ก-""!&!$,ก!" ก-""+1) " ก-""!&!$,+ $Iกก-""+1) -+*ก%"#.**&กก$&ก!"L* %)-"" !" b*)-"" %b)ก* ก *& +1) + )ก -%% %#$`+$Iก ก-""!&!$, -b*)-"" %,b)ก*กL &J* ก-""!&!$, +1!$-"!& !..!&* 5 4. ก-""")- (Bootstraping) ก-""")-(Bootstraping)!. +$*+กก*)% "Iก-%# (with replacement)%, -%Iก.ก#$#ก!"!.-ก L &ก-%!.+L &J* $++1 FML RML # กI%!*&$ (Least Square Method) m$ ก-""")- bJ*ก!"ก-%% %#$`*b)ก*&$. .+I&&กก #$q -&!I&ก ก-""" ก *& .ก!" FML +*$

สวพ.

มทร.ส

วรรณภ

24

ก%*&ก! - ก-""")-+*$b)ก*#$ !&%'ก, * ก +1) -""' (Good. 1999) I!"+I"กIm.I Efron and Tibshirani (1986) ก%,*ก *& ก-"" ")-#$* Im.I,$Iก 400 " m$ %*ก!"กก Ayesha Nneka Delpish (2006) ก% ก *& ก-""")-,$Iก 400 " I**ก%*$-*+ 5. ก-""" (Bayesian method) ก-"""1ก$I%!กก% ,-กJ* L &Iก-+ก-+"#.* (prior distribution) *)%1#.`กก!"+1*)%ก-+ก-+&%! (posterior distribution) L &!$,-%*-ก-+ก-+&%!+$Iกก-+-+ก"#.* &ก*)%"#.*+J&*กb)ก*&$.+I*!-% % I!"!&ก-+ก-+-""&%! (posterior distribution) J ก-+ก-+-""ก (normal distribution) m$b*ก-""+ (point estimator) -%ก-""J (interval estimator) L &!&4กJ!ก-+ก-+ &,ก'b*1กก-+ก-+-""%&!- (multivariate distribution) +m!"m*-%&&กกIก-+ก-+&%! (posterior distribution) - ก-"""*$+, *!$-&Iqก!" +1) -+m!"m*กIกก #$ (Goldstein. 1995)

3.2 VW กก$) -&I-""$ -%% %#$`

ก! aกb b& L &!$,+"! 1!$ ,& ,+ *& กI%!*&$ -"" (Ordinary Least Squares: OLS) กI%!*&$ -""!&!$,(Generalized Least Squares : GLS) -% +1) (Maximum Likelihood: ML) (Van der Leeden, Busing and Meijer. 1997 ; Maas and Hox. 2001) -ก *& กI%!*&$ -"" -*+1!$,

สวพ.

มทร.ส

วรรณภ

25

&-+ $Iก #$-) #$&"ก!" #$q + 90% (Kreft. 1996) I!"ก !"4++"!, *L-กI'+)%&L-กJ&ก m$L-ก%.ก " %-""$ (fixed effect) !.*ก%"#.*ก$&ก!"ก%!&* 5 -b*,1,*ก%"#.*+(%I*ก " !ก%,b"% %#$$ 1 , * !Jกก Maas -% Hox (2001) , *กก$&ก!"% %#$`-""$ m$ *& RML (%กก " +&ก .b*+Iก%*&ก 50 ก% ก$+Iก%ก!" 30 % %#$$ 1 ก!" 6.4 % L &ก "`กI !&I!5$ !" 0.05 m$ %*ก!"กก Van der Leeden (1997) , *Iกก-%*" b**)%,1,*ก%"#.*ก$&ก!"ก-+ก-+-""ก -% !&,5+I*% %#$`& m$ก-""$-%% %#$` !ก% +1) *$+ ก กI%!*&$ -""!&!$, I+ก "ก "! aกb b& !""%.&)ก!" !&!. (total sample size) I+ก " !"#"% -%!! !"+.&)ก!"+Iก%(number of groups) กก !&!. +กกก Mok(1995) Van der Leeden -% Busing. (1994) -% Cohen (1998) *(%กก %*ก! # -&I!-%I+ก "+), *!..&)ก!"+Iก%(number of groups) กก+I"%ก%(number of individuals per group)

-&I-""-%% %#$` ก% %#$%#(residual error) ก !"$ 1 !. L &!$,+-&I) +กกก Busing (1993) -% Van der Leeden -% Busing (1994) L &J*ก+I%-""45(simulation) " ก- L &J* กI%!*&$ -""!&!$,+*$-&I*&กก *& +1) ก+ก.-%*&!"ก- !"ก%!.+-&Iก'#$+Iก%กก 100 ก%., Maas -% Hox (2001) , *ก " #$+Iก% 30 ก% กL &J* RML +*$*

สวพ.

มทร.ส

วรรณภ

26

-&I -#$+Iก%*&กq กL & !ก%+*$$Iกก$1+ I!"ก "ก"- (variance components) !. b*ก%!& *&ก 100 ก% " ,b"% %#$$ 1 , * !กก Browne -% Draper (2006) -% Maas -% Hox(2001) L &J*ก+I%-""45 m$*(%กก %*ก! # b*+Iก% 24-30 ก% ก "`!.+ก % %#$$ 1 ก!" 0.09 -b*+Iก% 48-50 ก% +ก % %#$$ 1 0.08 -%b*+Iก% 100 ก% +ก % %#$$ 1 0.06 m$กก!.. "`$ !" 0.05

-&I-% !& L &ก-%*ก "`bก !"b*ก$ !&ก !" ! -%% %#$`ก'+b)ก*). +กกก Kreft (1996) ก$&ก!"กกI !& -%, *I1กz&&(rule of thumb) I!"ก !" ก 2 !" # กz 30/30 L & Kreft (1996) ก% #$*ก -&Iก !"+Iก%(number of groups) #&!&$J*ก !"$ 2 &*& 30 ก%., -%*+I"%ก%(number of individuals per group) #&!& !"$ 1 1 ก%*Jก&*& 30 ., -%+กกก!ก!G#$L &J*ก+I%-""45 , **$+กก$&ก!"ก-""$ L &ก!"กz&& (rule of thumb) *%!กr!b$+ก L &b*+!! * !"(cross-level interaction) +Iก%กก+I"%ก%กz 50/20 L &+Iก%ก!" 50 -%+I"%ก%ก!" 20 b*+ก$&ก!" %-""m$ก$&ก!"ก--- -%% %#$` +Iก%$+5ก ก%กz 100/10 # +Iก%!.- 100 ก%., -% ก%!.- 10 & ., (Hox. 2002) กz !ก%1ก+ !&I+b -I!"ก$ # *J*+&$J*กก'""*)% L & Moerbeek, van Breukelen -% Berger (2001) , *&ก$&ก!"45ก%#ก !&I!"ก !" ก 2 !" L &+

สวพ.

มทร.ส

วรรณภ

27

ก$&ก!"I+b -%*J*+&$J*กก'""*)% L &" *$J*กก'""*)%+.&)ก!" กก'""*)% 4. #%(%)"! #$*กก JJก$ ()*+!&*"+J*!- - JJก!. ()*+!&+J*!- X ก- "!Jก X ก.ก-+ก-++1 X I!5 I,) J#"!Jก, * J I*"r%$&-%-Jก, * L &!$,-%*4กJ!ก-+ก-++1!-!ก.&)ก!"!$#กก !ก%!ก1!," !!.ก+1$$ก #$, *-%* +I*()*+!&b!#$q $+, *ก J b*!- X 4กJ!ก-+ก-+.&)ก!" θ $$- "!"กJก!ก14กJ! θ *& J r%$&Jก# & )(XE=µ -%-Jก 22 )( µσ −= XE +14กJ! θ ก θ +I*()*+!&b µ -% 2σ , *ก *& ก!. *J**)%#!ก+ก!& ก%# +J*b"!1!$+ ก.+*J*!& #$+ก+I*, **)%L &,J*)*ก ' J" #&$+()*+!& #()*ก'""*)% b! !"% %#$, * ก.zb$J*ก*)%%*#.`+กกJ*!&!.. !!.กJ**)%+ก!&$,J*!& +I*()*+!&,bJ* กb$()*!G.-%*&b)ก*, * ,b! !"% %#$ก (%กก+,ก%*&1+ ก(Estimation) # กJ**)%+ก!&)b#$ก (θ ) #&)J ก*!$J*ก m$ก 2 # 1) ก-""+ (Point estimation) &b กก1 &#+ &

สวพ.

มทร.ส

วรรณภ

28

2) ก-""J(Interval estimation)&bก ก%&!ก1J &ก JJ#$!$(Confidence interval) JJ#$!$ !ก%, *L &!&! ),...,(ˆˆ

1 nXXθθ = θ กJ*ก-+ก-++1 ),...,(ˆ 1 nXXθ ก*JJ#$!$ #%%$ ก-""+ 1กJ*4กJ! ),...,(ˆˆ

1 nXXθθ = !&

nX1X ,..., L &+J*4กJ!$"!"ก1! θ ก+"! θ +!&ก-+ก-+!&%&ก+ θ $+J*, *%&!#%&4กJ! +%!กก$J*+"!!$ #$%#กJ*!* -%!กก$J*%#ก!$&)%&%!กก !!$+"!1!$ , *%&ก *& !กb ก!$&)%& !++, "!.กJ*!5Iก+I,)!$"!$b"ก *&m.I J ก -+ก-+-"กJ !กJ*r%$&!&1!r%$&Jก -%r%$&!ก"!$ %&ก %&!. ก!r%$&Jกก'*(%1r%$&!& *& &,ก'&!!#$q r%$&Jกก J +J*! &`!& ก$!&!& `&% กr%$&Jก +%#กJ*!* -%"!$ "ก "!$ !$+J*1กกก%#กJ**%&ก # ,&(Unbiasedness) *(Consistency) -$I (Minimum Variance) (Efficiency) -%% %#$กI%!r%$&$I (Minimum mean squared error) I!"&%& !. 1. %:) ! ),...,(ˆˆ

1 nXXθθ = 1!$,&(Unbiased estimator) θ ก'#$

θθ =)ˆ(E

สวพ.

มทร.ส

วรรณภ

29

θ 1!$&(Biased estimator) θ ก'#$ θθ ≠)ˆ(E -%&ก(% θθ −)ˆ(E &(Bias) θ ก θ

ก!$,&I, *%& # 1) J*!5Iก L &%#ก! θ θ !$ -%* &!

!. b* baE += θθ )ˆ( #$ a,b 1$-% 0a ≠ L &b!"-ก*, * )ˆ(1ˆ

1 ba

−= θθ

1!$,& θ 2) J*"!! θ $, *+ก ก$)-""$1!$,& θ J !-""J*&& Y " X $ Y = εβα ++ X &**` !-""กI%!$I (Least squares estimators) α -% β 1!$,& 3. %#ก! θ θ !$ -%* )ˆ(θE b*, * θθ =)ˆ(E - θ 1!$,& θ -b* θθ ≠)ˆ(E &&!,&& θθθ −= )ˆ()( Eb I!"-ก* θ +, *!,& θ 4. ก% & θ % J J* -+, (Jackknife) -"")%%(Quenouille) I !" "! ก$ & ก!" ก 1! $ , & . ! $ , & θ ++"!., *%&! 2. % ! nθ +1!$* θ ก'#$ nθ %)*+1 (Converge in probability or converge stochastically) , θ #$ !&*ก%*! - , * !ก 0]ˆ[lim =≥−

∞→εθθn

nP #

1]ˆ[lim =<−

∞→εθθn

nP

"!!$*

สวพ.

มทร.ส

วรรณภ

30

1) !$* θ ,+I1+*1!$,& θ 2) !$*+, *%&! 3) !$*+1!$&#,&ก', * !!. "!ก$&ก!"ก1!$* # #$!& !&5*ก%*! !-%*ก! 3. % Y#$ ! θ θ 1!$-$I (Minimum variance estimator : MVE) #!$ $ (Best estimator) θ ก'#$ θ -,กก-!#$ θ ก&"&"-! θ &"&"ก!"-! θ $"!#$q #q ก! $&+ก!ก , *-ก -!$,& θ #!$14กJ!J*!ก-%,& θ !!. ! θ θ 1!$,&$-$I (Minimum variance unbiased estimator : MVUE) #!$,& $ (Best unbiased estimator) θ ก'#$ θ 1!$,& θ $-$I " !$,& θ *&ก! ก+ก.-%* ! θ 1!J* $ ,& (Best linear unbiased estimator : BLUE) θ ก'#$ θ 14กJ!กI%!$!&$,& θ -%-$I " !$14กJ!กI%!$!&-%,& θ *&ก! ก%L &-%*"!!ก$&ก!"-$I # กI!$"!$ "ก&)-%* J 1!$,& m$%&!&"&"-ก!#$!$ $ !$ 4. %(&"9 +ก!$"!,&-%* +" r%$&!& )(X -%! &` )

~(X ก'1!$,& -% *

สวพ.

มทร.ส

วรรณภ

31

µ "!!$ # +%#ก!$-*&$ Cramer , *J*I M!$ N &b 1!$,& -%-*&$ (Minimum variance unbiased estimator : MVUE) "!.&ก !$ $ (Best estimator) L &"!!$ ) b, * !. 1) θθ =)ˆ(E # θ 1!$,& 2) )ˆ(θV +**&ก-!#$q $ %*ก!"* 1 # )ˆ(θV +**&ก-!-"",&!#$q b* 21

ˆ,ˆ θθ ก'1!$"!,& θ 1θ + )ก 2θ b* )ˆ()ˆ( 21 θθ VV < #

1)ˆ(

)ˆ(0

2

1 <<θ

θ

V

V

L &&ก )ˆ(

)ˆ(

2

1

θ

θ

V

V !! (Relative Efficiency)

L &!$," !!.%&$!G. กI *1 )ˆ,...,ˆ,ˆ( 21 kθθθ m$"!1!$,& θ !$# )ˆ( iE θ = θ , i = 1,2,,k ก$+%#ก iθ ! !$1! θ L &J*"!#$ L &J* ก&q # %#ก jθ m$ )ˆ()ˆ( ij VV θθ ≤ #$ i, j = 1,2,,k L & ji ≠ 5. %$;กY4Y#$ ! θ θ 1!$% %#$กI%!r%$&$I (Minimum mean squared error estimator ) ก'#$

2*2 )ˆ()ˆ( θθθθ −≤− EE , *θ +1! q θ #$ Ωθε

สวพ.

มทร.ส

วรรณภ

32

&ก 2)ˆ( θθ −E % %#$กI%!r%$& θ ก θ !ก- *& )ˆ(θMSE b* θ 1!$,& θ +', *! )ˆ()ˆ( 2 θθθ VE =− m$bJ* 2)ˆ( θθ −E -% )ˆ(θV 1#$! % %#$ θ ก θ 5. (ก%)"!2ก !" #$

กก !"!. ก$, *!"&กI,&I!$L-ก # +1) (Maximum Likelihood) m$ !ก%., *ก!G&#$ L &-"1 2 # +1) -""+Iก! (Restricted Maximum Likelihood ) -% +1) -""' (Full Maximum Likelihood ) L &J*ก`กI *& EM (Expectation Maximization) I!"L-กI'+)b$J*ก !"กJ* ก !ก%1%!ก # L-ก HLM -%L-ก SPSS 1* ก+ก., *ก!G- ก$&ก!" ก-""" (Bayesian) L &&%& !.(Randenbush and Bryk. 1992 :230-248, 2002 : 399-444) ก%)"!2ก !" #$ ก% 2 $ กก !"ก 2 !" b&ก)-""!$, # ก-""!$, !"$ 1

rXY += β ),0(~ ψNr

L & Y # ก!- X # ก!- !"$ 1 β # ก! a !"$ 1 r # ก% %#$ !"$ 1

สวพ.

มทร.ส

วรรณภ

33

ก-""!$, !"$ 2

uW += γβ , ),0(~ τNu

L & β # ก!- !"$ 2 W # ก!- !"$ 2 γ # ก! a !"$ 2 u # ก% %#$ !"$ 2

#$-ก$ 2 ก$ 1 +, *ก !.

rXuXWY ++= γ #$Iก$ 3 +! )%!ก)-""( (Mixed Model) , *ก !.

rAAY ++= 2211 θθ #$ XWA =1 , ,2 XA = γθ =1 -% u=2θ

L & Y # ก!- 1θ # ก %-""$ (Fixed Effect) m$," 2θ # ก %-"" (Random Effect) !"$ 2

1A -% 2A # ก!- r # ก %-"" (Random Effect) !"$ 1

สวพ.

มทร.ส

วรรณภ

34

+กก)-""( (Mixed Model) m$+1ก#.`กI, *& +1) -""+Iก! (Restricted Maximum Likelihood ) -% +1) -""' (Full Maximum Likelihood )

ก *& +1) -""+Iก! (Restricted Maximum Likelihood) !.ก Iก !. !.$ 1 $* (Starting Estimates) 2σ -% τ !.$ 2 I 2σ -% τ , *

1θ -% *2θ

][ 2

112111

*1 ∑ ∑ −−= yjjjyj SCSSVθ

112*

11 VD σ= )( *

12121*

2 θθ jyjjj SSC −= −

jVD 22

2*22 σ=

-% 1

12*11

*12

−−= jjj CSDD

L & 12

22−+= τσjj SC

[ ] 1

211

121111

−−∑ ∑−= jjjj SCSSV

-%

สวพ.

มทร.ส

วรรณภ

35

1121121

1122

−−− += jjjjjj CSVSCCV

!.$ 3 I 2σ , τ , *

1θ -% *2 jθ ,- E(CDSS)

( )∑ τσ ,,| 2/ YrrE jj = ( ) ( )[ ]∑∑ +− −

jjjjj SVtrSCSVtrF 2222211

12112σ

( )∑ τσθθ ,,| 2/

22 YEjj = ∑∑ + jjj V22

2/*2

*2 σθθ

!.$ 4 I$, *!.$ 3 ,-ก ∑= Nrr jj /ˆ /2σ

∑−= /

221ˆ

jjJ θθτ

!.$ 5 I$, *!.$ 4 -!.$ 2 +, * *

1θ -% *2θ

!.$ 6 I$, *!.$ 4 -% 5 ,-4กJ!+1 (Likelihood Function) ก

∑ ∑−++−−−−∝ − *111

22 loglogˆlog)ˆlog()()],|(log[ jj QCVJFJRNYf τστσ

#$ 2*

22*11

'* /)ˆˆ( σθθ jjjjjj AAYYQ −−= !.$ 7 $, *!.$ 4 -% 5 +b)กI,J*!., L &+& กก'#$4กJ!+1 (Likelihood Function) %$&-%,ก 6 (log 0.000001) #ก 100 " L &$, *" *& # $1!-

สวพ.

มทร.ส

วรรณภ

36

ก *& +1) -""' (Full Maximum Likelihood) !.ก Iก !. !.$ 1 $* (Starting Estimates) 2σ , τ -% 1θ !.$ 2 I$, *, *

2 jθ , * !ก )( 11

/2

1*2 θθ jjjj AYAC −= −

-%

12*22

−= CD σ

L & ( ) 1122

/2

1 −−− += τσAAC !.$ 3 I 2σ , τ -% *

2 jθ ,- E(CDSS) ก$ ( )∑ τσθθ ,,,| 2

122/1

YAAE jjj= *

22/1 jjj

AA θ∑

( )∑ τσθθθ ,,,| 2

1/22 YEjj = ∑∑ −+ 12/*

2*2 jjj Cσθθ

( )∑ τσθ ,,,| 2

1/ YrrE jj = ∑ ∑ −+ jjjjj AACtrrr 2

/2

1*/*

L & *

2211*

jjjjj AAYr θθ −−= !.$ 4 I$, *!.$ 3 ,-ก

สวพ.

มทร.ส

วรรณภ

37

( ) ∑∑

−=

−jjjjjj

AYAAA22

/1

1

1/11

ˆ θθ

∑−= /22

1ˆjjJ θθτ

∑= Nrr jj /ˆ /2σ

!.$ 5 I$, *!.$ 4 ,-4กJ!+1 (Likelihood Function)

∝)],,|(log[ 12 θτσYf ∑ −+−−− 12 logˆlog)ˆlog()( jCJJRN τσ

( ) ( ) 2*2211

/11 ˆ/ˆˆ σθθθ jjjjjj AAYAY −−−−∑

!.$ 6 $, *!.$ 4 +b)กI,J*!., L &+& กก'#$4กJ!+1 (Likelihood Function) %$&-%,ก 6 (log 0.000001) #ก 100 " L &$, *" *& # $1!- ก%)"!2ก !" #$ ก% 3 $ กก !" ก 3 !"!.*m!"m* m$L-ก$J*ก !" J L-ก HLM -%L-ก SPSS 1* +Iก *& +1) -""' L &J*ก`กI *& EM (Expectation Maximization) m$&%& !. ก-""!$, !"$ 1

επ += aY , ),0(~ ψε N

L & Y # ก!-

สวพ.

มทร.ส

วรรณภ

38

a # ก!- !"$ 1 π # ก! a !"$ 1 ε # ก% %#$ !"$ 1

ก-""!$, !"$ 2

rX += βπ , ),0(~ πτNr

L & π # ก!- !"$ 2 X # ก!- !"$ 2 β # ก! a !"$ 2 r # ก% %#$ !"$ 2

ก-""!$, !"$ 3

uW += γβ , ),0(~ πτNu

L & β # ก!- !"$ 3 W # ก!- !"$ 3 γ # ก! a !"$ 3 u # ก% %#$ !"$ 3

#$-ก-""!$, !"$ 3 -% !"$ 2 ก-""!$, !"$ 1 +, *ก !.

εγ +++= araXuaXWY #$Iก$ 3 +! )%!ก)-""( (Mixed Model) , *ก !.

สวพ.

มทร.ส

วรรณภ

39

εθθθ +++= 332211 AAAY #$ aXWA =1 , ,2 aXA = ,3 aA = ,1 γθ = u=2θ -% r=3θ

L & Y # ก!- 1θ # ก %-""$ (Fixed Effect) m$," 2θ # ก %-"" (Random Effect) !"$ 3 3θ # ก %-"" (Random Effect) !"$ 2

1A 2A -% 3A # ก!- ε # ก %-"" (Random Effect) !"$ 1

ก *& +1) -""' (Full Maximum Likelihood) I!"ก !" ก 3 !" !.ก Iก !. !.$ 1 $* (Starting Estimates) 2σ , βπ ττ , -% 1θ !.$ 2 I$, *, *

2 jkθ -% *3 jkθ !ก

MdAV

jkk/222

*2 =θ

)( *

22/3

1*3 kjkjkjk AdAC θθ −= −

-% ( )12

3/3

−+= πτσjkjkAAC

L & /

31

3 jkjkjk ACAIM −−=

สวพ.

มทร.ส

วรรณภ

40

!.$ 3 I 2σ , βπ ττ , -% 1θ ,- E(CDSS) ก ( )∑∑ βπ ττσθεε ,,,| 2

1/

jkjkE = ∑ */*

jkjkεε

( )[ ]∑ ∑+ kjkjkjkVAMAtr 222

2/2

( )∑∑ −+ 13

/3

2jkjkjk

CAAtrσ

L & *

33*2211

*jkjkkjkjkjkjk AAAY θθθε −−−=

( )∑∑ βπ ττσθθθ ,,,,| 2

1/33 YEjkjk = ∑∑∑∑ + jkjkjk V33

2/*3

*3 σθθ

( )∑ βπ ττσθθθ ,,,,| 2

1/22 YEkk = ∑∑ + kkk V22

2/*2

*2 σθθ

!.$ 4 I$, *!.$ 3 ,-ก

( ) ( )∑∑∑∑ −−=− *

33*22

/1

1

1/11

ˆjkjkkjkjkjkjkjk

AAYAAA θθθ

2σ = Tjkjk

// εε∑∑

πτ = ∑∑− /

331

jkjkJ θθ

βτ = /

221

kkK θθ∑−

!.$ 5 I$, *!.$ 4 ,-4กJ!+1 (Likelihood Function) ก

สวพ.

มทร.ส

วรรณภ

41

∝)],,,|(log[ 12 θττσ βπYf βτσ ˆlog)ˆlog()( 2

32 KJRKRT −−−−

∑∑∑ −++− 122 loglogˆlog

jkk CVJ πτ

∑∑− 2* ˆ/σjkQ L & ( )*

3*22

/*jkjkkjkjkjkjk AAddQ θθ −−=

-% 11 θjkjkjk AYd −= !.$ 6 $, *!.$ 4 +b)กI,J*!., L &+& กก'#$4กJ!+1 (Likelihood Function) %$&-%,ก 6 (log 0.000001) #ก 100 " L &$, *" *& # $1!-

(ก%) !-ก0! (Empirical Bayes)

ก-"""J+!ก (Empirical Bayes) $I&กJ*ก !". &ก Empirical Bayes # Shrinkage Estimator 1 $!"!*-&I. L &J* กb.I!ก *&$& (Reliability) !!.ก *& .+*$-&I -%-$Iก กI%!*&$ -"" (Ordinary Least Square: OLS) กก !" *& ก-"""J+!ก (Empirical Bayes) , *- &%& กI-"ก1 2 ก !. (Raudenbush and Bryk. 2002) 1. ก-"""J+!ก (Empirical Bayes) ก !" ก 2 !" !.$ 1 L & OLS -%ก"-(Variance-Component) *& กI%!*&$ -"" (Ordinary Least Square: OLS) !.$ 2 I$, *!.$ 1 , *& Empirical Bayes # Shrinkage Estimator !.

สวพ.

มทร.ส

วรรณภ

42

!- !"% 1 !- ( )( )jjjj

SE

j W010000ˆˆ1ˆˆ γγλβλβ +−+=

#$ ( ) [ ]jjjn

yreliabilit20 )ˆ(

στ

τβλ

+=

!- !"% 2 !-

( )( )

jjjjj

SE

j WW 2021010000ˆˆˆ1ˆˆ γγγλβλβ ++−+=

#$ ( ) [ ]jjjkn

yreliabilit20 )ˆ(

στ

τβλ

+=

!.$ 3 I$, *!.$ 2 ,1!- !"$ 2 -% %-""$ (Fixed Effect) -% %-"" (Random Effect) 2. ก-"""J+!ก (Empirical Bayes) ก !" ก 3 !" !.$ 1 L & OLS -%ก"-(Variance-Component) *& กI%!*&$ -"" (Ordinary Least Square: OLS) !.$ 2 I$, *!.$ 1 , *& Empirical Bayes # Shrinkage Estimator !. !- !"% 1 !- ( )( )

jkkkjkjkjk

SE

jk X100000ˆˆ1ˆˆ ββλπλπ +−+=

สวพ.

มทร.ส

วรรณภ

43

#$ ( ) [ ]jk

jkjkn

yreliabilit20 )ˆ(

στ

τπλ

π

π

+=

( )( )kkokk

SE

k W100000000ˆˆ1ˆˆ γγλβλβ +−+=

#$ ( )( )

++

=−−

∑1

12

00 )ˆ(

jk

kk

n

yreliabilit

σττ

τβλ

πβ

β

!- !"% 2 !- ( )( )jkkjkkkjkjkjk

SE

jk XX 2201100000ˆˆˆ1ˆˆ βββλπλπ ++−+=

#$ ( ) [ ]jk

jkjkn

yreliabilit20 )ˆ(

στ

τπλ

π

π

+=

( )( )kkkokk

SE

k WW 2020010100000000ˆˆˆ1ˆˆ γγγλβλβ ++−+=

#$ ( )( )

++

=−−

∑1

12

00 )ˆ(

jk

kk

n

yreliabilit

σττ

τβλ

πβ

β

!.$ 3 I$, *!.$ 2 ,1!- !"$ 2 -% !"$ 3 -% %-""$ (Fixed Effect) -% %-"" (Random Effect) +ก$ก% ก$&I,J*L-กI'+)bก !" # FML -% RML ก+ก.-%*, *ก!G- กI ก-""" (Bayesian) $&ก Empirical Bayes # Shrinkage Estimator J*ก!"!#$*-&I -%-$I !!.ก+!&!.. ()*+!&, *&"&" ก FML RML -% EB

สวพ.

มทร.ส

วรรณภ

44

#$+ก !ก%, *!"ก&!"-%กI,J*ก!L &!$,L-กI'+)b J L-ก HLM L-ก R -%L-ก SPSS 1*

6. ก L (2536) , *&"&"(% !" *& OLS Separate Equation ก!"L-กJ-%' กก4++!&$ %(%! aก&!ก& !"! &ก%& ก%!&1!ก&J!.! &ก$ 4 +I 649 ) 21 (%กก ก !" *& OLS Separate Equation " !- !"!ก& , *-ก J455 + -%-+)+! a %(%! aก&&!&I!5"*&-L &r%$&ก*&,!&I!5b(%! aก& m$-กก!"ก *&L-กJ-%' $" J455 -%+ %(%! aก&&!&I!5 !- !"J!.&$ %$&!&I!5!. #ก! # "กก) -% L& ก&"&" ก " ก *& OLS Separate Equation +*+! I-*)%#$J*ก 2 !. !"$-" ก *&J-%' Iก+! I-*)%!. & -%J-%' b+"!&I!5(!-!-$+กก-% !" m$ OLS Separate Equation ,bI, * + .1*&#&!ก!.J-%' ก OLS Separate Equation Kanjanawasee (1989) , *ก %L&$(%! aก& * !&-%+J!ก&J!.! &ก*,& L &&"&"ก *& Traditional -""q # -"" Variance Component Analysis -"" Standard Regression Analysis -%-"" Hierarchical Analysis of Covariance ก!"ก !" -"" OLS (Ordinary Least Square) Single Equation -"" OLS Separate Equation -%-"" HLM (Hierarchical Linear Model) J**)%+ก The Second International Mathematics Study (SIMS) ,& ก%!&1!ก&J!.! &ก$ 2 +I 4,030 )-%()*"L&+ก 99 L& 3 !" # !"!ก& !"J!.& -% !"L& (%กก" 4++!&$(%(%! aก&!ก&#

สวพ.

มทร.ส

วรรณภ

45

(%! aก&- !กก กJ*#$ %$"* J&%#()*กก&)*J ก, *-+)+()*ก -r%$&J !"J!.& J!.& "กก) !+I!ก&) 1 -%!G)()*J (%ก&"&" ก " ก !"1ก$กก *& -"" Traditional ก&"&"ก !"-""q " ก-"" OLS Single Equation 1ก$% %#$`ก*ก$( % (overestimate) ก!- !"J!.&-% !"L&&) !"!ก& I*ก% %#$`$I I*!-!&I!5bกก$+1 ก -""J-%' *ก Mean Square Error b)ก*กก-"" OLS !.-""

Newsom and Nishishiba (2002) , *กก$&ก!"&$ก +ก !&-%ก,%)*กก !"ก*)%1) m$L & RML L &+I%*)% *&L% (Monte Carlo) m$, *ก %! a!! &J!. (Intraclass Correlation Coefficient) -% !&(Sample Size) $(%&ก-%% %#$` L &ก! a!! &J!. 4 !" # 0.05 , 0.10 , 0.20 -% 0.30 -% !& 5 !" # 50 , 100 , 200 , 500 -% 1,000 L &Iกกก 2 !" L &+ก %+Iก% (Number of Groups) (%กก" +Iก% (Number of Groups) -%! a!! &J!.(%I*ก &-%% %#$` -%I*ก 45ก+ ! -ก(Intercept) -%J! (Slope) -%L &!$, %-""$ -%% %#$`+&$I -I!" %-"" -%% %#$`+&) ()*+!&+, *- ก-% "` %-"""!J*!& 5b**)%1) Maas and Hox (2004) , *กก$&ก!"-กกก !" #$ก%!& %'ก กก!..1กกก 2 !" L &J*L% (Monte Carlo) m$#$,ก+I%-""45 # 1) +Iก%(Number of groups) -"1 3 # 30, 50, -% 100 2) ก% (Size of groups) -"ก1 3

สวพ.

มทร.ส

วรรณภ

46

# 5 , 30 -% 50 3) ! a!! &J!. (Intraclass Correlation Coefficient) -"ก1 3 # 0.1( %'ก) 0.2 ( ก%) -% 0.3 ( 5) !!.+#$,ก+I%-""45!. 27 #$, L &Iก+I%-""45-%bก+I 1,000 " L &!- !"$ 1 -% !"$ 2 !"% 1 !- I!"ก -%% %#$`J* กI%!*&$ !&!$,m.I-""+Iก! (Restricted Iterative Generalized Least Square: RIGLS) (%กก" +Iก%(Number of groups) ก% (Size of groups) -%! a!! &J!.(%ก"I*ก &ก %-""$ -%I*ก*JJ#$!$-%ก "!&I!5b %-"" !"$ 2 !.,b)ก* #$+Iก%(Number of groups) $Iก 30 ก+I%$+Iก%$I # 30 !. b 9% $ก-"" !"$ 2 &)กJJ#$!$$ 95% !!.กz&& (rule of thumb) Kreft (1996) !.+ก %-""$ -% %-""r !"$ 1 ,, *Ibก "!&I!5 %-"" !"$ 2 Maas and Hox (2004) , *กก$&ก!" !&I!"ก !" กก!..1กกก 2 !" L &J*L% (Monte Carlo) m$#$,ก+I%-""45 # 1) +Iก%(Number of groups) -"1 3 # 30, 50, -% 100 2) ก% (Size of groups) -"ก1 3 # 5 , 30 -% 50 3) ! a!! &J!. (Intraclass Correlation Coefficient) -"ก1 3 # 0.1( %'ก) 0.2 ( ก%) -% 0.3 ( 5) L &!- !"$ 1 -% !"$ 2 !"% 1 !- I!"ก -%% %#$`J* RML (%กก" #$ !& !"$ 2 ,ก 50 ก-%% %#$` !"$ 2 +1!$& -I!" !"$ 1 ก-%% %#$`+1!$,&-%b)ก* Eqbal Z. M. Darandari (2004) , *ก-กกL %J*% %!$&*ก%%&*ก%"#.*ก$&ก!"$--%1% %#$ !"$ 2 L &1กก)-""*+ ! -ก1!- (Random Intercept as Outcomes) m$กก, *กI #$,ก+I%-""45 # 1) กI -% %#$ !"$ 2 +I 3 !" 2) กI 1

สวพ.

มทร.ส

วรรณภ

47

% %#$ !"$ 2 +I 3 !" 3) กI !! !- +I 3 4) กI !& !"$ 2 +I 2 # 50 -% 300 -% 5) กI !& !"$ 1 +I 2 # 30 -% 150 m$ก+I%-""45!..bก!. +I 108 bก -%bกIm.I+I 100 J L &ก!.J* FML (%กก " ก -%$&+-ก-กก!#$ก%%&*ก%"#.*&) !"ก%-% !"ก m$#$*ก%"#.*ก$&ก!"1% %#$b)ก%%& ก-%-+ก & L & %ก%%&*ก%"#.* !ก%+กzJ! +#$ !&% %L &r !& !"$ 2 m$ %.+.&)ก!"$+ -%!! !- ก+ก!.-%*&!I* !! -%!! ( ,+ก)-"" *& Browne and Draper (2006) , *ก&"&" ก-"""-% ก$J*+1) 1`$ก!"L % !" L &!b#$&"&" -"""-% ก$J*+1) 1`กก"- (variance component) -%)-"" %กb b&-""L%+ก ก 2 !" L &ก+I%-""45 กI !& !"$ 1 +I 5-61 & -% !"$ 2 +I 6-36 & (%กก" 1) L %ก"- !"กL & -"""-% ก$J*+1) 1`1!$,& 2) ก!. 2 &&ก-%45ก-#$!& %'ก (small sample size) -%( ก (extreme value) 3) ก-"" quasi-likelihood )-""กกb b&L%+ก-"" !" " ก- %-""!., $& -% 4) ก-"""&&กกJก"#.* -%*ก!"!-""+ -%-""J L &-%* ก-""+1) (Maximum Likelihood : ML) 1 $กก-%bI, * 'ก -""" Ayesha Nneka Delpish (2006) , *ก&"&" กL %J*% %!$ +1) -""+Iก! ก!" ")- L &+I%-""ก

สวพ.

มทร.ส

วรรณภ

48

2 !" L &กI #$,ก+I%45 # กI ก-+ก-+ 2 %!ก # ก-+ก-+-""ก -%ก-+ก-+-"",-$-ก!" 1 กI !-$ก !"% 1 !- กI !& !"$ 1 # 30 & -% !"$ 2 # 30 -% 100 & กI ! a!! &J!. 2 # 0.01 -% 0.20 m$ก+I%-""45!..bก!. +I 8 bก -%กก-%bกIm.I+I 500 " (%กก " +Iก%-%! a!! &J!.(%b)ก*ก L &#$+Iก%).I*&ก% % m$I*!&I!5b&ก#$J* ก-""+1) -""+Iก! -%#$! a&J!.).I* ก!. 2 % % ก+ก.+กกก " ก !ก%b %-""$, *b)ก* I!"ก-+ก-+% %#$(% ก *& !ก% L &r#$% %#$ก-+ก-+-"",- ก!. 2 + % % L & ก-""")-+&$Iก +1) -""+Iก! Lauren Terhorst (2007) , *ก&"&" !! L % !" L &, *Iกกก 2 !" I!" ก$Iกก" *& FML RML %-""$ (Fixed Effect) กI%!*&$ b.I!ก-""$ 1 (Weight Least Square 1 ) กI%!*&$ b.I!ก-""$ 2 (Weight Least Square 2 ) กI%!*&$ b.I!ก-""$ 3 (Weight Least Square 3 ) L &กI !& !"$ 2 +I 3 # 20, 50 -% 100 กI ! a!! &J!. +I 2 # 0.10 -% 0.20 L & !"$ 1 กI !-+I 1 !- -% !"$ 2 +I 3 !- (%กก " FML RML 1 ก$&*&$ L & FML -% RML 1 ก$ RMSD $I$ #$&"&"ก!!. 6 +กก$()*+!&, *กก-%+!&$ก$&* " 45ก !"!.+#$+กก%!& %'ก m$+,(%I*ก&!. %-""$ (fixed effects) -% %-"" (random effects) -%(%

สวพ.

มทร.ส

วรรณภ

49

bก"% %#$$ 1 ก "`b ก+ก.กz&& (rule of thumb) $IL & Kreft (1996) กกI !&ก !" ก 2 !" &!,$ m$ Mass and Hox (2004) ก% กz&& (rule of thumb)!. *I!5ก %-""$ (fixed effects) -% %-"" (random effects) !"$ 1 ,, *Ibก "!&I!5 %-"" (random effects) !"$ 2 +I*,b"% %#$$ 1 !"$ 2 , *ก "` +ก45$ก%m$+', *กก5กI ก-""q J*กก -&!,, *กI&"&"ก!L &#$,ก+I%-""45 &ก!ก$ก%!& %'ก +I*()*+!&+$+ก กก !" #$ก%!& %'ก -%Jก,, *ก-+ก-+-""ก #$, *ก$&ก!" ก$ #$ก%!& %'ก,

สวพ.

มทร.ส

วรรณภ

3

ก ก

ก กก !"#$%& "#ก '( R !*+ก(,-&.'!/.ก, 01! "#$ ก,#!2, ก21 "1 / 3ก ,

กก

$ ก ก&ก -4 ก0#"15 &&ก*+ก( 1. ,%ก&*+ก(,ก"& กก 1ก" 2 ก(0, ,%ก& กก9, 1"ก1ก" ,,%ก& กก/, 1-:ก1ก" ก 1 (skewness) ,1 1(kurtosis)

2.60 4.00 -0.50 (-0.50, 2.60) - 0.50 - (0.50, 4.00)

2. ก "-, ,, 1 "$ &2ก, 3. ก 1- ,-&.N-- ! .#'$ % (Intraclass Correlation Coefficient) 2 / 0.01 , 0.20 4. ก / ก21 "1

,& 1 3 / 5, 15 , 25 ,& 2 3 / 5, 15 , 25 ,& 3 3 / 5, 15 , 25

สวพ.

มทร.ส

วรรณภ

51

5. .ก, 01! "#& *+ก(&ก ,ก . FML . RML ,. EB 6. $ "1,-4 ก0#%2/ : 1,000 %2 $%& " # (Monte Carlo Technique)

7. !0,-&.'!/., 01! "#$ ก,#!2, ก21 "1 / 3ก -&"!0 1"15 / θ "ก"1ก1! "#! & !,41-1 $1/ θ "ก"1ก1 θ ก3-1ก-&1, 0,"ก:1$ก1 θ 1 , ก ", 0& ก(0,%1 1 ,ก1", 0& 1&^ ก,กก1&"ก, 0 ก ก0_#&$%&20'!$ ก(0, 1 (Bias) ,", 0&&-2 ", 0& 1 "&-2 ก0_#ก"- ,-&.'! 0ก- ก "1

1 (Bias) /", 01

θ

θ

θ −=∑=

000,1

ˆ

)ˆ(

000,1

1t

t

Bias

θ 1! "#&, 0

tθ ", 01! "# θ $ ก&9& t t /ก&9

8. ก&1 /.ก, 01! "# ก&1 /&.!&(FB) ,&.!-21 (RB) 9+ -:"$ ก 0

P

Bias

FB

p

i

i∑== 1

)ˆ(θ

สวพ.

มทร.ส

วรรณภ

52

)ˆ( iBias θ 1 /&.!& P ! "#&, 0/&.!&

P

Bias

RB

p

i

i∑== 1

)ˆ(θ

)ˆ( iBias θ 1 /&.!-21 P ! "#&, 0/&.!-21

--4"&$%$ ก&,-&.'!/.ก, 01! "#$ ก,#!2, ก,# !2:0& (One way MANOVA ) ! -&-4"&-"1 Univariate Tests ,. Scheffe & &-&, - 0.01 !ก ก

ก ก& $% !"#%1$ ก ก& ก& / "

1. -"-21 & กก 1ก" 2 ก(0, $%./ Ramberg ,0,9+- .ก-"-21 &/+ :1ก (Skewness) , 1 (Kutosis) 9+"-21 4:กก ก1! "# 4 1

( )

2

43

1

1

λ

−−+λ=

λλ ]RR[x

& R "/-21 & กกก:$ %1 (0 , 1)

สวพ.

มทร.ส

วรรณภ

53

1λ ! "#&ก " 1 (Location parameter) 2λ ^ ! "#&ก -ก (Scale parameter) 43 λλ , ^ ! "#&ก :1 (Shape parameter) 9+/+ ก1 , 1&ก 4กก - " ,1 43 λ=λ -1 321 λλλ ,, , 4λ 1 ก"กก/ Ramberg et al. (1979) " 1 ,1 1&ก &1 21 λλ , & 1s&1ก 0 , &1ก 1 "141s&1ก µ , &1ก 2σ ,"1 21 λλ , ก"

1λ (µ , 2σ ) = 1λ (0,1) σ + µ 2λ (µ , 2σ ) = 2λ (0,1) /σ

$ กก 1s , a 1s&1ก 7 &1ก 3 X 1s&1ก 10 &1ก 3 W 1s&1ก 13 &1ก 3 ε 1s&1ก 0 &1ก 3 r 1s&1ก 0 &1ก 3 u 1s&1ก 0 / :1ก1 ICC

2. -/ :"" (Y) $ ก(0,:1$ :%- (Linear Model)

ijkY = kjkijkijkjkk uraXW 000100010001000 ++++++ επβγγ

สวพ.

มทร.ส

วรรณภ

54

ก 1- ,-&.Nก44 6,5,3 010001000 === βγγ , 7100 =π

3. ก / ก21 "1 ,& 1 3 / 5, 15 , 25 ,& 2 3 / 5, 15 , 25 ,& 3 3 / 5, 15 , 25

4. .ก, 01! "#& *+ก(&ก ,ก . FML . RML ,. EB 5. $ "1,-4 ก0#%2/ : 1,000 %2 $%& " # (Monte Carlo Technique)

สวพ.

มทร.ส

วรรณภ

4

กก กก ! #$ก% &%'ก ()*+ &,*-!(%ก%ก. 2 0

1 ก ก ก !" #ก$ "!$%ก ก &กก'(ก'(')*)'$+!,ก ก

2 ก ก ก !" #ก$ "!$%ก ก &กก'(ก'(')'$+!.ก ก +!ก(""// 0.)("1!)ก,!"2$"ก3 !"/ FML # ก ( 7. !'% (Full Maximum Likelihood) RML # ก ( 7. !'(,ก"! (Restricted Maximum Likelihood) EB # ก '& ("ก3 (Shrinkage Estimator: SE) FB # $' RB # $'

ICC # " R""&"/ (Intraclass Correlation Coefficient) 1 ก ก !"ก#!#$% &

ก$ % 'ก ก(กก)*ก)*)+,+)- .ก ก

/(,0$ก!$ $!!"/ 1. '!ก ก !" #ก$

"!$%ก ก &กก'(ก'(')*)'$+!,ก ก 2. ก ก !"

#ก$ "!$%ก ก &กก'(ก'(')*)'$+!,ก ก

สวพ.

มทร.ส

วรรณภ

56

1. ) ก !"ก#!#$% & ก$

% 'ก ก(กก)*ก)*)+,+)- .ก ก $! กW!" 1

1 ก ก !" #ก$ " !$%ก ก &กก'(ก'(')*)'$+!,ก ก

n.

level 3

n.

level 2

n.

level 1 ICC

FML RML EB

FB RB FB RB FB RB

5 5

5 0.01 -0.0573 -1.0404 -0.0561* -0.8927 -0.3650 -0.3860*

0.20 0.0628 -0.8332 0.0625* -0.5468 -0.2352 0.1718*

15 0.01 -0.0010* -1.0157 0.0010* -0.8865 -0.1349 -0.2185*

0.20 0.0811 -0.7885 0.0784 -0.5134 -0.0411* 0.5001*

25 0.01 0.0019* -1.0233 0.0047 -0.9016 -0.0853 -0.1958*

0.20 -0.0036 -0.8034 -0.0031* -0.5363* -0.0875 0.5405

5 15

5 0.01 0.0209* -0.9568 0.0212 -0.9044 -0.2888 -0.3694*

0.20 0.1057 -0.7337 0.1053* -0.5354 -0.1777 0.2184*

15 0.01 0.0331 -0.9595 0.0326* -0.9143 -0.1057 -0.2464*

0.20 -0.0046 -0.7386 -0.0043* -0.5460 -0.1256 0.4660*

25 0.01 -0.0106* -0.9587 -0.0108 -0.9141 -0.0977 -0.1976*

0.20 0.0604 -0.7444 0.0601 -0.5582 -0.0211* 0.5194*

5 25

5 0.01 -0.0107* -0.9565 -0.0112 -0.9233 -0.3204 -0.3944*

0.20 -0.0331* -0.7158 -0.0333 -0.5304 -0.3251 0.2310*

15 0.01 0.0102 -0.9487 0.0097* -0.9190 -0.1278 -0.2494*

0.20 0.0679 -0.7102 0.0677 -0.5284 -0.0557* 0.5057*

25 0.01 0.0076* -0.9425 0.0078 -0.9133 -0.0804 -0.1926*

0.20 -0.0433 -0.7194 -0.0430* -0.5409* -0.1335 0.5614

สวพ.

มทร.ส

วรรณภ

57

1 ()

n.

level 3

n.

level 2

n.

level 1 ICC

FML RML EB

FB RB FB RB FB RB

15 5

5 0.01 0.0090* -0.9727 0.0093 -0.9284 -0.3029 -0.3346*

0.20 0.0001* -0.6271 -0.0002 -0.5321 -0.2778 0.4750*

15 0.01 -0.0069 -0.9560 -0.0064* -0.9172 -0.1462 -0.1533*

0.20 -0.0098 -0.6534 -0.0092* -0.5675* -0.1372 0.7027

25 0.01 -0.0009 -0.9563 -0.0005* -0.9187 -0.0909 -0.1056*

0.20 -0.0539* -0.6370 -0.0539* -0.5513* -0.1312 0.8256

15 15

5 0.01 -0.0008 -0.9331 -0.0007* -0.9168 -0.3119 -0.3518*

0.20 -0.0206 -0.6145 -0.0206* -0.5491 -0.3091 0.4050*

15 0.01 0.0073 -0.9340 0.0071* -0.9200 -0.1309 -0.2121*

0.20 0.0019* -0.6002 0.0020 -0.5349* -0.1215 0.7285

25 0.01 -0.0021* -0.9325 -0.0022 -0.9190 -0.0898 -0.1645*

0.20 -0.0003* -0.6080 -0.0003* -0.5446* -0.0741 0.7897

15 25

5 0.01 -0.0001* -0.9312 -0.0002 -0.9207 -0.3105 -0.3653*

0.20 0.0206* -0.6015 0.0206* -0.5407 -0.2655 0.4142*

15 0.01 -0.0096* -0.9245 -0.0097 -0.9153 -0.1471 -0.2135*

0.20 0.0010* -0.6030 0.0010* -0.5439* -0.1215 0.6948

25 0.01 0.0062 -0.9302 0.0061* -0.9214 -0.0819 -0.1802*

0.20 0.0358* -0.6054 0.0358* -0.5472* -0.0386 0.7706

สวพ.

มทร.ส

วรรณภ

58

1 ()

n.

level 3

n.

level 2

n.

level 1 ICC

FML RML EB

FB RB FB RB FB RB

25 5

5 0.01 0.0133* -0.9347 0.0135 -0.9079 -0.2988 -0.2792*

0.20 0.0025* -0.6088 0.0026 -0.5531 -0.2789 0.4885*

15 0.01 -0.0042 -0.9437 -0.0040* -0.9208 -0.1437 -0.1373*

0.20 0.0072* -0.6015 0.0073 -0.5490* -0.1130 0.8064

25 0.01 0.0178* -0.9389 0.0178* -0.9168 -0.0723 -0.0795*

0.20 0.0029 -0.6057 0.0028* -0.5543* -0.0734 0.8823

25 15

5 0.01 -0.0068* -0.9300 -0.0068* -0.9206 -0.3194 -0.3507*

0.20 -0.0057* -0.5862 -0.0057* -0.5470 -0.2924 0.4508*

15 0.01 0.0004* -0.9275 0.0004* -0.9191 -0.1377 -0.2001*

0.20 -0.0073* -0.5835 -0.0073* -0.5453* -0.1265 0.7483

25 0.01 0.0036* -0.9269 0.0036* -0.9188 -0.0846 -0.1540*

0.20 0.0126* -0.5770 0.0126* -0.5386* -0.0661 0.8523

25 25

5 0.01 -0.0013* -0.9234 -0.0013* -0.9173 -0.3120 -0.3543*

0.20 -0.0241* -0.5792 -0.0241* -0.5431 -0.3119 0.4478*

15 0.01 -0.0091* -0.9259 -0.0092 -0.9205 -0.1475 -0.2177*

0.20 -0.0201* -0.5821 -0.0201* -0.5469* -0.1397 0.7312

25 0.01 0.0018* -0.9253 0.0018* -0.9200 -0.0870 -0.1709*

0.20 -0.0040* -0.5830 -0.0040* -0.5478* -0.0827 0.8165

* ก ! .$

สวพ.

มทร.ส

วรรณภ

59

(ก 1 $' (Fixed Effects) ก #ก$ "!" 3 ก" 5, 15 '$ 25 ก$ "!" 2 ก" 5, 15 '$ 25 '$ก$ "!" 1 ก" 5, 15 '$ 25 '$" R""&"/ (ICC) ก" 0.01 '$ 0.20 *`"/! 54 #1 FML '$ RML $', ! (, 35 #1 ก" '$ EB $', ! (, 3 #1 ," FML $', !ก" RML (, 19 #1

$' (Random Effects) ก #ก$ "!" 3 ก" 5, 15 '$ 25 ก$ "!" 2 ก" 5, 15 '$ 25 '$ก$ "!" 1 ก" 5, 15 '$ 25 '$" R""&"/ (ICC) ก" 0.01 '$ 0.20 *`"/! 54 #1 EB $' , ! (, 40 #1 '$ RML $' , ! (, 14 #1

สวพ.

มทร.ส

วรรณภ

60

2. ก !"ก#!#$%

& ก$ % 'ก ก(กก)*ก)*)+,+)- .ก ก

กF% 2-4

2 '!ก' .'!# ก ก !" #ก$ "!$%ก

ก &กก'(ก'(')*)'$+!,ก ก

Dependent

Var.

Inependent

Var.

Pillai's

Trace F

Hypothesis

df

Error

df Sig.

FB,RB Method 0.6671 39.7901** 4 318 0.0000

**%.%[\% 0.01

(ก 2 ก "/ 3 ก $' '$$' 'กก"","2b!" 0.01 !) Univariate Tests กW0$!" 3

สวพ.

มทร.ส

วรรณภ

61

3 '!ก Univariate Tests # ก ก !" #ก$ "!$%ก ก &ก

ก'(ก'(')*)'$+!,ก ก

Dependent

Var. Source Sum of Squares df Mean Square F Sig.

FB Contrast 0.7979 2 0.3990 111.3796** 0.0000 Error 0.5695 159 0.0036

RB Contrast 4.6539 2 2.3270 60.3820** 0.0000

Error 6.1275 159 0.0385

**","2b!" 0.01 (ก 3 0$ก Univariate Tests ก "/ 3 ก $' '$$' 'กก"","2b!" 0.01 !) Scheffe กW0$!" 4

สวพ.

มทร.ส

วรรณภ

62

4 '!ก.!) Scheffe # ก ก !" #ก$ "!$%ก ก &ก

ก'(ก'(')*)'$+!,ก ก

Dependent

Var.

InependentVar.

(Method)

FML RML EB

0.0175 0.0175 0.1664

FB

FML 0.0175 - 0.0000 -0.1489**

RML 0.0175 - -0.1489** EB 0.1664 -

0.8017 0.7293 0.4115

RB

FML 0.8017 - 0.0724 -0.3902**

RML 0.7293 - -0.3178**

EB 0.4115 -

**","2b!" 0.01

(ก 4 FML ก" RML ก $',ก EB ","2b!" 0.01 '$ FML ก" RML ก $''กก"1","2b!" 0.01

EB ก $' ,ก FML ก" RML ","2b!" 0.01 '$ FML ก" RML ก $' 'กก"1","2b!" 0.01

(ก0$ก).$ '! ก &กก'(ก'(')*)'$+! ,ก ก FML '$ RML . !ก $' '$ EB . !ก $'

สวพ.

มทร.ส

วรรณภ

63

2 ก ก !"ก#!#$% &

ก$ % 'ก ก(กก)*ก)*)+)- bก ก /(,0$ก!$ $!!"/

1. '!ก ก !" #ก$ "!$%ก ก &กก'(ก'(')'$+!.ก ก

2. ก ก !" #ก$ "!$%ก ก &กก'(ก'(')'$+!.ก ก

1. ) ก !"ก#!#$% & ก$

% 'ก ก(กก)*ก)*)+)- bก ก

กF% 5

สวพ.

มทร.ส

วรรณภ

64

5 ก ก !" #ก$ " !$%ก ก &กก'(ก'(')'$+!.ก ก

n.

level 3

n.

level 2

n.

level 1 ICC

FML RML EB

FB RB FB RB FB RB

5 5

5 0.01 0.0785* -1.3288 0.0794 -1.2107 -0.2404 -0.8011*

0.20 0.0221 -1.1597 0.0210* -0.9328 -0.2785 -0.3617*

15 0.01 0.0043 -1.2723 0.0040* -1.2361 -0.3116 -0.7536*

0.20 0.0048* -1.1416 0.0084 -0.9225 -0.1263 -0.1234*

25 0.01 0.0807 -1.3000 0.0812 -1.1990 -0.0094* -0.6206*

0.20 0.0674 -1.1392 0.0681 -0.9219 -0.0290* -0.0572*

5 15

5 0.01 -0.0316* -1.2673 -0.0322 -1.2249 -0.3401 -0.7963*

0.20 0.0390* -1.0944 0.0400 -0.9386 -0.2645 -0.3400*

15 0.01 0.0100 -1.2639 0.0097* -1.2272 -0.1296 -0.6870*

0.20 -0.0250 -1.0720 -0.0243* -0.9141 -0.1554 -0.0830*

25 0.01 -0.0186* -1.2581 -0.0191 -1.2225 -0.1072 -0.6435*

0.20 -0.0202 -1.0747 -0.0200* -0.9138 -0.0954 -0.0219*

5 25

5 0.01 0.0204* -1.2565 0.0204* -1.2295 -0.2912 -0.8008*

0.20 0.0318 -1.0919 0.0312* -0.9511 -0.2609 -0.3576*

15 0.01 0.0272* -1.2494 0.0273 -1.2248 -0.1116 -0.6793*

0.20 -0.0150* -1.0765 -0.0154 -0.9370 -0.1379 -0.1226*

25 0.01 0.0413 -1.2541 0.0408* -1.2311 -0.0469 -0.6568*

0.20 0.0385* -1.0601 0.0388 -0.9139 -0.0427 -0.0166*

สวพ.

มทร.ส

วรรณภ

65

5 ()

n.

level 3

n.

level 2

n.

level 1 ICC

FML RML EB

FB RB FB RB FB RB

15 5

5 0.01 0.0043 -1.2723 0.0040* -1.2361 -0.3116 -0.7536*

0.20 -0.0098* -1.0075 -0.0101 -0.9326 -0.2988 -0.1354*

15 0.01 0.0018 -1.2625 0.0014* -1.2313 -0.1370 -0.6190*

0.20 -0.0267 -1.0070 -0.0262* -0.9375 -0.1515 0.0933*

25 0.01 0.0309* -1.2617 0.0311 -1.2316 -0.0591 -0.5801*

0.20 0.0048 -0.9961 0.0044* -0.9262 -0.0672 0.1916*

15 15

5 0.01 -0.0001 -1.2472 0.0000* -1.2342 -0.3124 -0.7830*

0.20 0.0229 -0.9848 0.0228* -0.9318 -0.2696 -0.1602*

15 0.01 -0.0010 -1.2508 -0.0008* -1.2395 -0.1391 -0.6766*

0.20 0.0154* -0.9895 0.0155 -0.9394 -0.1088 0.0511*

25 0.01 0.0079* -1.2466 0.0080 -1.2356 -0.0807 -0.6320*

0.20 0.0023* -0.9840 0.0024 -0.9330 -0.0800 0.1384*

15 25

5 0.01 0.0031 -1.2399 0.0030* -1.2317 -0.3084 -0.7858*

0.20 -0.0154* -0.9871 -0.0154* -0.9394 -0.3035 -0.1819*

15 0.01 0.0018* -1.2383 0.0018* -1.2310 -0.1359 -0.6697*

0.20 -0.0398* -0.9858 -0.0399 -0.9389 -0.1574 0.0467*

25 0.01 -0.0100* -1.2417 -0.0100* -1.2346 -0.0982 -0.6405*

0.20 0.0061* -0.9804 0.0061* -0.9338 -0.0728 0.1228*

สวพ.

มทร.ส

วรรณภ

66

5 ()

n.

level 3

n.

level 2

n.

level 1 ICC

FML RML EB

FB RB FB RB FB RB

25 5

5 0.01 0.0087* -1.2550 0.0089 -1.2336 -0.3067 -0.7335*

0.20 0.0034* -0.9808 0.0034* -0.9350 -0.2831 -0.0870*

15 0.01 0.0136 -1.2486 0.0135* -1.2302 -0.1236 -0.5977*

0.20 -0.0240 -0.9804 -0.0239* -0.9388 -0.1466 0.1415*

25 0.01 0.0104* -1.2548 0.0104* -1.2371 -0.0790 -0.5697*

0.20 0.0277 -0.9697 0.0276* -0.9276 -0.0469 0.2447*

25 15

5 0.01 0.0147* -1.2392 0.0147* -1.2315 -0.2975 -0.7724*

0.20 0.0034* -0.9601 0.0034* -0.9282 -0.2848 -0.1214*

15 0.01 -0.0009* -1.2388 -0.0009* -1.2321 -0.1400 -0.6553*

0.20 -0.0295* -0.9625 -0.0296 -0.9318 -0.1486 0.1085*

25 0.01 0.0003* -1.2407 0.0003* -1.2342 -0.0876 -0.6223*

0.20 -0.0068* -0.9662 -0.0068* -0.9358 -0.0890 0.1693*

25 25

5 0.01 0.0060* -1.2383 0.0061 -1.2334 -0.3066 -0.7846*

0.20 0.0175 -0.9748 0.0174* -0.9466 -0.2672 -0.1654*

15 0.01 0.0005* -1.2362 0.0005* -1.2319 -0.1378 -0.6659*

0.20 0.0017 -0.9548 0.0016* -0.9260 -0.1172 0.1111*

25 0.01 0.0098* -1.2400 0.0098* -1.2358 -0.0791 -0.6376*

0.20 -0.0022* -0.9663 -0.0022* -0.9383 -0.0803 0.1498*

* ก ! .$

สวพ.

มทร.ส

วรรณภ

67

(ก 5 $' (Fixed Effects) ก #ก$ "!" 3 ก" 5, 15 '$ 25 ก$ "!" 2 ก" 5, 15 '$ 25 '$ก$ "!" 1 ก" 5, 15 '$ 25 '$" R""&"/ (ICC) ก" 0.01 '$ 0.20 *`"/! 54 #1 RML $', ! (, 35 #1 $ FML $', ! (, 32 #1 '$ EB $', ! (, 2 #1 ," FML $', !ก" RML (, 15 #1

$' (Random Effects) ก #ก$ "!" 3 ก" 5, 15 '$ 25 ก$ "!" 2 ก" 5, 15 '$ 25 '$ก$ "!" 1 ก" 5, 15 '$ 25 '$" R""&"/ (ICC) ก" 0.01 '$ 0.20 *`"/! 54 #1 EB $' , ! ก#1

สวพ.

มทร.ส

วรรณภ

68

2. ก !"ก#!#$%

& ก$ % 'ก ก(กก)*ก)*)+)- bก ก

กF% 6-8

6 '!ก' .'!# ก ก !" #ก$ "!$%ก

ก &กก'(ก'(')'$+!.ก ก

Dependent

Var.

Inependent

Var.

Pillai's

Trace F

Hypothesis

df

Error

df Sig.

FB,RB Method 0.8425 57.8659** 4 318 0.0000

**%.%[\% 0.01 (ก 6 ก "/ 3 ก $' '$$' 'กก"","2b!" 0.01 !) Univariate Tests กW0$!" 7

สวพ.

มทร.ส

วรรณภ

69

7 '!ก Univariate Tests # ก ก !" #ก$ "!$%ก ก &ก

ก'(ก'(')'$+!.ก ก

Dependent

Var. Source Sum of Squares df Mean Square F Sig.

FB Contrast 0.8158 2 0.4079 119.3309** 0.0000 Error 0.5435 159 0.0034

RB Contrast 17.3486 2 8.6743 214.3694** 0.0000

Error 6.4338 159 0.0405

**","2b!" 0.01 (ก 7 0$ก Univariate Tests ก "/ 3 ก $' '$$' 'กก"","2b!" 0.01 !) Scheffe กW0$!" 8

สวพ.

มทร.ส

วรรณภ

70

8 '!ก.!) Scheffe # ก ก !" #ก$ "!$%ก ก &ก

ก'(ก'(')'$+!.ก ก

Dependent

Var.

InependentVar.

(Method)

FML RML EB

0.0178 0.0179 0.1684

FB

FML 0.0178 - -0.0001 -0.1506** RML 0.0179 - -0.1505** EB 0.1684 -

1.1380 1.0811 0.4171

RB

FML 1.1380 - 0.0569 -0.7209**

RML 1.0811 - -0.6640**

EB 0.4171 -

**","2b!" 0.01

(ก 8 FML ก" RML ก $',ก EB ","2b!" 0.01 '$ FML ก" RML ก $''กก"1","2b!" 0.01

EB ก $' ,ก FML ก" RML ","2b!" 0.01 '$ FML ก" RML ก $' 'กก"1","2b!" 0.01

(ก0$ก).$ '! ก &กก'(ก'(')'$+!

.ก ก FML '$ RML . !ก $' '$ EB . !ก $'

สวพ.

มทร.ส

วรรณภ

5

ก กก !"#$%& "#ก '( R "*+,-#!./ก(,-&0'!10ก, 23! "#$ ก,#!+, ก+3 "3 1 4ก ,!&,-&0'!10ก, 23! "#$ ก,#!+, ก+3 "3 1 4ก ,ก-+ ' ,1- , ก

ก./ก(,-&0'!10ก, 23! "#$ ก,#!+, ก+3 "3 1 4ก -+ก 1. ก./ก(,-&0'!10ก, 23! "#$ ก,#!+, ก+3 "3 1 4ก , 1.1 ก2,%ก กก7, 3"ก3ก" 3 1&0!& (Fixed Effects) $ ก, 23! "# ก+3 "3$ ,& 3 &3ก 5, 15 , 25 ก+3 "3$ ,& 2 &3ก 5, 15 , 25 ,ก+3 "3$ ,& 1 &3ก 5, 15 , 25 ,3- ,-&0H-- ! 0#'$ % (ICC) &3ก 0.01 , 0.20 7/ & 54 1 !3 0 FML ,0 RML 3 1&0!&"-+ 35 1 &3ก ,0 EB 3 1&0!&"-+ 3 1 -0 FML 3 1&0!&"-+&3ก0 RML 19 1

3 1&0!-+3 (Random Effects) $ ก, 23! "# ก+3 "3$ ,& 3 &3ก 5, 15 , 25 ก+3 "3$ ,& 2 &3ก 5, 15 , 25 ,ก+3 "3$ ,& 1 &3ก 5, 15 , 25 ,3- ,-&0H-- ! 0#'$ % (ICC) &3ก 0.01 , 0.20 7/ & 54 1 !3 0 EB 3 1&0!-+3 "-+ 40 1 ,0 RML 3 1&0!-+3 "-+ 14 1

สวพ.

มทร.ส

วรรณภ

72

1.2 ก2,%ก กก1, 3-Vก3ก"3 1&0!& (Fixed Effects) $ ก, 23! "# ก+3 "3$ ,& 3 &3ก 5, 15 , 25 ก+3 "3$ ,& 2 &3ก 5, 15 , 25 ,ก+3 "3$ ,& 1 &3ก 5, 15 , 25 ,3- ,-&0H-- ! 0#'$ % (ICC) &3ก 0.01 , 0.20 7/ & 54 1 !3 0 RML 3 1&0!&"-+ 35 1 0 FML 3 1&0!&"-+ 32 1 ,0 EB 3 1&0!&"-+ 2 1 -0 FML 3 1&0!&"-+&3ก0 RML 15 1

3 1&0!-+3 (Random Effects) $ ก, 23! "# ก+3 "3$ ,& 3 &3ก 5, 15 , 25 ก+3 "3$ ,& 2 &3ก 5, 15 , 25 ,ก+3 "3$ ,& 1 &3ก 5, 15 , 25 ,3- ,-&0H-- ! 0#'$ % (ICC) &3ก 0.01 , 0.20 7/ & 54 1 !3 0 EB 3 1&0!-+3 "-+&+ก 1 2. ก&,-&0'!10ก, 23! "#$ ก,#!+, ก+3 "3 1 4ก ,

2.1 ก&,-&0'!10ก, 23! "#$ ก,#!+, ก+3 "3 1 4ก ก2,%ก กก7, 3"ก3ก" !3 0 FML ,0 RML ,-&0'!-V-+$ ก, 23&0!& ,0 EB ,-&0'!-V-+$ ก, 23&0!-+3 & &-&, - 0.01

2.2 ก&,-&0'!10ก, 23! "#$ ก,#!+, ก+3 "3 1 4ก ก2,%ก กก1, 3-Vก3ก" !3 0 FML ,0 RML ,-&0'!-V-+$ ก, 23&0!& ,0 EB ,-&0'!-V-+$ ก, 23&0!-+3 & &-&, - 0.01 - *-+0ก, 23! "#& ,- $ "3,-* ก2# ,กW" 9

สวพ.

มทร.ส

วรรณภ

73

" 9 -0ก, 23! "#& ,- $ "3,-* ก2#

กก !" !#$

7, 3"ก3ก" 0 FML, 0 RML 0 EB 1, 3-Vก3ก" 0 FML, 0 RML 0 EB

ก./ก(,-&0'!10ก, 23! "#$ ก,#!+, ก+3 "3 1 4ก ,4 & 3- $'

ก&,-&0'!10ก, 23! "#$ ก,#!+, ก+3 "3 1 4ก ก2,%ก กก7, 3"ก3ก" ก-กก2,%ก กก1, 3-Vก3ก" 0 FML ก0 RML 3 $ ก, 231&0!&"ก30 EB 3 -&-*"&, 0.01 ,0 EB 3 $ ก, 231&0!-+3 "ก30 FML ก0 RML 3 -&-*"&, 0.01 -0 FML ก0 RML 3 $ ก, 231&0!&,&0!-+3 "ก"3ก 3 3 -&-*"&, 0.01 & กก, 23&0!& (Fixed effects) 0 FML ,0 RML กX ก 2ก / ,-&0'!$กก 7/-ก 1 Longford. 1993 !3 RML , "ก30 FML [!,ก2&- %ก$ "3,ก+3 &3ก (equal group sizes) ก, 230 RML ,$3, 2& 3 กก30 FML (Searle, Casella and McCulloch. 1992) "3$ &c" ,#1 V$%ก -4V-3 $33, 2$ ,& 2 ,"ก"3ก ก!&. $ " 3&-(Browne. 1998) 0 FML , 1$ ก $% +3ก$ ก 2 ก3 ,3- ,-&0Hก**,$%fก#% 3,g -V-+(likelihood function) & กก ก&0 FML ,0 RML ,-&0'!$ ก, 23&0!&-V-+ -ก 1 Lauren Terhorst (2007) ./ก(&0, 23! "#1c- ! 0#$ !+, &ก./ก($ ก2 2 , -0ก, 23! "#& ./ก(,ก 0 FML 0 RML 0, 23&0!& (Fixed

สวพ.

มทร.ส

วรรณภ

74

Effect) 0ก- &-+*3 ก& 1 (Weight Least Square 1 )0ก- &-+*3 ก& 2 (Weight Least Square 2 )0ก- &-+*3 ก& 3 (Weight Least Square 3 ) ก 1 "3$ ,& 2 3 1 20, 50 , 100 ก 3- ,-&0H-- ! 0#'$ % 2 1 0.10 , 0.20 ,& 1 ก "-, 1 " ,,& 2 3 " ก./ก( !3 0 FML 0 RML g 0ก, 23& &-+ 0 FML , RML g 0ก, 23! "#& 3 RMSD "&-+ &ก & 6 0 -ก, 23&0!-+3 (Random effect) 0 EB 3 $ ก, 231&0!-+3 (RB) "ก30 FML ,0 RML ก0 EB $ ก, 23! "# ก*3 ก3! "#!$ & (Reliability) 7/g 0ก&- *$%$ ก+ก, 23! "#, "X $ *Vก"1/ / $ 3 "ก30

%&ก"''

1. กก./ก(,-&0'!10ก, 23! "#$ ก,#!+, ก+3 "3 1 4ก ก2,%ก กก7, 3"ก3ก" ,ก2,%ก กก1, 3-Vก3ก" !3 0 FML ,0 RML ,-&0'!-V-+$ ก, 23&0!& ,0 EB ,-&0'!-V-+$ ก, 23&0!-+3

$ ก,#!+, ก+3 "3 1 4ก ,,%ก กก 3ก" !2"*+,-#1ก!ก$%0$ ก, 23! "#3 ,-

2. ก./ก(! ก2&1 Vg - "3 1กกก1 V$ ,-V &ก./ก(.Vก%- - %3 ก21 Vg - 3 , ,& 3 1 V $%0ก%+2'! -1 V$ ,& 1 , 2 7/ 1 "33 1-V- *$%& ก,# !+,$ ก ก3

สวพ.

มทร.ส

วรรณภ

75

%&ก"'(# )

1. ก./ก(,-&0'!10ก, 23! "#$ V 13- V2# (Fully Conditional Model) 2. ก./ก(,-&0'!10ก, 23! "# ก""-- ! 0# (Autocorrelation) 3. ./ก(0ก, 23&0!-+3 &&$ 3 "-+ &ก0ก, 230 p

สวพ.

มทร.ส

วรรณภ

สวพ.

มทร.ส

วรรณภ

77

. (2545). ก. 2. ก: !"#$ %&'(ก)#'*'(*.

'+) #!. (2536). ก !"#$%"&'(&%)ก *+,ก*#%*+-ก!&* : ก!**' / & """ $ ก &0. *'../ .. ( ก'01ก2'). ก: 3)4*'(* %&'(ก)#'*'(*.

0* ก'5%.'. (2548). ก"#. 3. ก: !"#$ %&'(ก)#'*'(*.

/ +ก7. (2542). +. ก: 8'.กก'*1ก. Ayesha Nneka Delpish. (2006). A Comparison of estimators in hierarchical linear

modeling: Restricted maximum likelihood versus Bootstrap via minimum norm quadratic unbiased estimators. A dissertation submitted to the Department of Statistics in partial fulfillment of the requirements for the degree of Doctor of Philosophy. The Florida State University.

Bolstad M.W. (2004). Introduction to Bayesian Statistics. New Jersey: John Wiley and Sons.

Browne, W.J. (1998). Applying MCMC methods to multilevel models. University of Bath, UK.

Browne, W.J., and Draper, D. (2000). Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models. Computational Statistics, 15, 391-420.

Browne, W.J., and Draper, D. (2006). A comparison of Bayesian and likelihood-based method for fitting multilevel models. International Society for Bayesian Analysis, 1(3), 473-514.

สวพ.

มทร.ส

วรรณภ

78

Busing, F. (1993). Distribution characteristics of variance estimates in two-level models. Unpublished manuscript. Leiden: Department of Psychometrics and Research Methodology, Leiden University.

Cohen, M.P. (1998). Determining sample sizes for surveys with data analyzed by hierarchical linear models. Journal of Official Statistics, 14, 267-275. Darandari, E.Z.M. (2004). Robustness of parameter estimates under violations of second-

level residual homoskedasticity and independence assumptions. Unpublished doctoral dissertation. The Florida State University.

Dempster,A. P.,Laird,N.M. and Rubin,D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Seires B, 39, 1-8.

De Leeuw, J., and Kreft, I.G.G. (1986). Random coefficient models for multilevel analysis. Journal of Educational Statistics, 11, 57-85.

Elston, R. C., and Grizzle, J.E. (1962). Estimation of time response curves and their confidence bands. Biometrics, 18, 148-159.

Goldstein, H. (1995). Multilevel statistical model. 2nd Ed. New York: John Wiley. Good, P.I. (1999). Resampling methods: a practical guide to data analysis. Boston/Berlin:

Birkhauser. Heck, R.H., and Thomas, S.L. (2000). An introduction to multilevel modeling techniques. Mahwah, NJ: Lawrence Erlbaum Associates. Hedeker, D., and Gibbons, R.D. (1996a). MIXOR: A computer program for mixed effects

ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49, 157-176.

Hox, Joop J. (2002). Multilevel Analysis : Techniques and Applications. New Jersey : Lawrence Erlbaum Associates. Kreft, Ita, G.G. (1996). Are Multilevel Techniques Necessary? An Overview, Including Simulation Studies. California State University, Los Angeles.

สวพ.

มทร.ส

วรรณภ

79

Laird, N.M., and Ware, H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.

Lauren Terhorst. (2007). A Comparison of estimation methods when an interaction is omitted form multilevel model. Submitted to the Graduate Faculty of the School of Education in partial fulfillment of the requirements for the degree of Doctor of Philosophy. University of Pittsburgh.

Longford, N. (1987). A fast scoring algorithm for maximum likelihood estimation in unbalanced models with nested random effects. Biometrika, 74(4), 817-827.

Longford, N.T. (1990). VARCL. Software for variance component analysis of data with nested random effects (Maximum Likelihood). Princeton, NJ: Educational Testing Service.

Longford, N. (1993). Random coefficient models. Oxford: Clarendon. Maas, C.J.M., and Hox, J.J. (2001). Robustness of multilevel parameter estimates against

non-normality and small sample sizes. In J. Blasius, J. Hox, E. de Leeuw and P.Schmidt (Eds.), Social science methodology in the new millennium. Proceedings of the Fifth International conference on logic and methodology. Opladen, FRG: Leske+Budrich.

Maas, C.J.M., and Hox, J.J. (2004). Robustness of multilevel parameter estimates against small sample sizes. Department of Methodology and Statistics, Utrecht University.

Maas, C.J.M., and Hox, J.J. (2004). Sample Sizes for multilevel Modeling. Department of Methodology and Statistics, Utrecht University.

Maronna R.A. and Martin R.D. and Yohai J.V. (2006). Robust Statistics: Theory and Methods. England: John Wiley and Sons.

Martinez R.A. and Martinez L.W. (2002). Computation Statistics Handbook with MATLAB. United Stated of America : Chapman and Hall/CRC.

Mason, W.M., Wong, G.M., and Entwistle, B. (1983). Contextual analysis through the multilevel linear model. In S. Leinhardt (Ed.), Sociological methodology (pp. 72-103). San Francisco: Jossey-Bass.

สวพ.

มทร.ส

วรรณภ

80

Moerbeek, M., van Breukelen, G.J.P., and Berger, M. (2001). Optimal experimental design for multilevel logistic models. The Statistician, 50, 17-30.

Mok, M. (1995). Sample size requirements for 2-level designs in educational research. Unpublished manuscript. London: Multilevel Models Project, Institute of education, University of London. Available at http://multilevel.ioe.ac.uk.

Newsom T.J., and Nishishiba M. (2002). Nonconvergence and Sample Bias in Hierarchical Linear Modeling of Dyadic Data, Institute on Aging School of Community Health, Portland State University .

Ramberg, J.S., E.J. Dudewicz , P.R. Tadikamalla and E.F. Mykytka. 1979. A probability distribution and its uses in fitting data. Technometrics. 21: 201-214. Rasbash, J., Browne, W., Goldstein, H.,Yang, M., Plewis, I., Healy, M., Woodhouse, G.,

Draper, D., Langford, I., and Lewis, T. (2000). A useres guide to MlwiN. London: Multilevel Models Project, University of London.

Raudenbush, S.W., and Bryk, A.S. (1992). A Hierarchical Linear Model: Applications and Da ta Analysis Methods. California : Sage Publications.

Raudenbush, S.W., Bryk, A.S., Cheong, Y.F., and Congdon, R. (2000). HLM 5. Hierarchical linear and nonlinear modeling. Chicago: Scientific Software International.

Raudenbush, S.W., and Bryk, A.S. (2002). A Hierarchical Linear Model : Applications and Da ta Analysis Methods. 2nd Ed. California : Sage Publications.

Rosenberg, B. (1973). Linear regression with randomly dispersed parameters. Biometrika, 60, 61-75.

Searle, S.R., Casella, G., and McCulloch, C.E. (1992). Variance components. New York: Wiley.

สวพ.

มทร.ส

วรรณภ

81

Sirichai Kanjanawasee. (1989). Alternative Strategies for Policy Analysis: An Assessment of School Effects on Studentse Cognitive Effective Mathematics Outcomes in Lower Secondary School in Thailand. Doctoral Dissertation, University of California, Los Angeles.

Singer, J.D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 23(4), 323-355.

Snijders, T.A.B., and Bosker, R. (1999). Multilevel analysis. An introduction to basic and advanced multilevel modeling. Thousand Oaks, CA: Sage. Spiegelhalter, D. (1994). BUGS: Bayesian inference Using Gibbs Sampling. MRC

Biostatistics Unit, Cambridge, UK. Available at: http://www.mrc-bsu.cam.ac.uk/bugs. Van der Leeden, R., and Busing, F. (1994). First iteration versus IGLS/RIGLS estimates

in two-level model: A Monte Carlo study with ML 3. Unpublished manuscript. Leiden: Department of Psychometrics and Research Methodology, Leiden University.

Van der Leeden, R., Busing, F., and Meijer, E. (1997). Applications of bootstrap methods for two-level models. Paper, Multilevel Conference, Amsterdam, April 1-2, 1997. Weisner, A.J. (2004). Comparing bootstrap, MINQUE40, and ReML estimates of variance components of a two-level random coefficient model with non- normal errors: A simulation study. Unpublished doctoral dissertation. University of Pittsburgh, Pittsburgh, PA.

Recommended