A dynamic Complex Transformation generating FRACTALS

Preview:

DESCRIPTION

A dynamic Complex Transformation generating FRACTALS. Generation of Julia’s “rabbit”. Generation of the set of Mendelbrot. Review 1 : Complex Numbers set. The complex number z = a + i b is represented in the coordinates plane by a point M(a,b) or vector (a,b). - PowerPoint PPT Presentation

Citation preview

A dynamic Complex Transformation

generating FRACTALS

• 北京景山学校 纪光老师April 2010

1Fractals & Complex Numbers

Generation of Julia’s “rabbit”

• 北京景山学校 纪光老师April 2010

Fractals & Complex Numbers 2

Generation of the set of Mendelbrot

• 北京景山学校 纪光老师April 2010

Fractals & Complex Numbers 3

Review 1 :Complex Numbers set

• 北京景山学校 纪光老师April 2010

4Fractals & Complex Numbers

The complex number z = a + i b is represented in the coordinates plane by a point M(a,b) or vector (a,b)

£

In polar coordinates z = r (cos j + i sin j) or r. e i j

• r is the module of z : r = |z| = • j is the argument :

arg(z) = j

OMu ruuu

≡ e

r; OM

u ruuu( ) 2π[ ]

OMu ruuu

= a2 +b2

Review 1.a :

Complex Numbers set

• 北京景山学校 纪光老师April 2010

5Fractals & Complex Numbers

The omplex numberz = a + i b

is represented in the coordinates plane by the

point M(a,b)where a and b are

eal numbers and i an imaginary square root of (-1)

£

£

°

Review 1.b :

Complex Numbers set

• 北京景山学校 纪光老师April 2010

6Fractals & Complex Numbers

In polar coordinates

z = r (cos j + i sin j)

or z = r. e i j

£

• r is the module of z :

r = |z| = OMu ruuu

= a2 +b2

• j is the argument :

arg(z) = j ≡ e

r; OM

u ruuu( ) 2π[ ]

Review 2Operations in

• 北京景山学校 纪光老师April 2010

7Fractals & Complex Numbers

(1) Addition : if z = a + i b and z’ = a’ + i b’then z + z’ = (a + a’) + i (b + b’)

(2) Multiplication :if z = r. e i j and z’ = r’. e i j’

then z.z’ = r.r’.e i (j+j’)

£

Review 2.aOperations in

• 北京景山学校 纪光老师April 2010

8Fractals & Complex Numbers

Construction of the Sum z = a + i b

z’ = a’ + i b’=================

z + z’ = (a + a’) + i (b + b’)

£

The image of the sumis the sum of the

vectors associated with the vectors representing

z and z’

Review 2.bOperations in

• 北京景山学校 纪光老师April 2010

9Fractals & Complex Numbers

Construction of the product z = r. e i j

z’ = r’. e i j’

================= z.z’ = r. r’. e i (j + j’)

£

The module of the product is the product of the modules

The argument of the product is the Sum of the

arguments

Transformation in

• 北京景山学校 纪光老师April 2010

10Fractals & Complex Numbers

Construction of the square z = r. e i j

z2 = r2. e i 2j

£

The module of the square is the square of the module.

The argument of the square is the double of the

argument.

z a z2

Transformation (1.1) in

• 北京景山学校 纪光老师April 2010

11Fractals & Complex Numbers

Construction of z2

z = r. e i j

z2 = r2. e i 2j

£

1st method :

1. Square the module OM in OM1

2. Rotate the point M1 in M’

z a z2

Transformation (1.2) in

• 北京景山学校 纪光老师April 2010

12Fractals & Complex Numbers

Construction of z2

z = r. e i j

z2 = r2. e i 2j

£

2nd method :

1. Rotate the point M in M2

2. Square the module of OM2 in OM’

z a z2

Transformation (1.3) in

• 北京景山学校 纪光老师April 2010

13Fractals & Complex Numbers

£ z a z2

(Demo / Cabri / Fig.2)

Transformation (2.1) in

• 北京景山学校 纪光老师April 2010

14Fractals & Complex Numbers

Construction of z2 + c z = r. e i j

z2 + c = r2. e i 2j + cc is a complex constantrepresented by the point C

£

1st Method :

1. Square the module of OM in OM1

2. Rotate the point M1(z1) in M’

3. Add the vector

z a z2 +c

OCu ruu

to O ′Mu ruuu

Transformation (2.2) in

• 北京景山学校 纪光老师April 2010

15Fractals & Complex Numbers

Construction of z2 + c z = r. e i j

z2 + c = r2. e i 2j + cc is a complex constantrepresented by the point C

£

2nd Method :

1. Rotate the point M(z) in M1

2. Square the module of OM1 in OM’

3. Add the vector

z a z2 +c

OCu ruu

to O ′Mu ruuu

Transformation (2.3) in

• 北京景山学校 纪光老师April 2010

16Fractals & Complex Numbers

£ z a z2

(Demo / Cabri / Fig.3)

Construction of “Julia’s rabbit” in

by iterating the transformation

• 北京景山学校 纪光老师April 2010

17Fractals & Complex Numbers

£

z a z2 + c1. Choose a point C of affix c in the Complex plane.

2. Choose a point M0(z0) in the Complex plane.

3. Build the image M1(z1) of M0(z0) by the above transformation in the coordinates plane.

4. Build the image M2(z2) of M1(z1) by the above transformation in the coordinates plane.

Construction of “Julia’s rabbit” in

by iterating the transformation

• 北京景山学校 纪光老师April 2010

18Fractals & Complex Numbers

£

z a z2 + c5. Continue to apply the transformation to each

new point and mark them in the plane, until you get a sequence of 10 points or more …

6. If the points get off the screen, we mark them in blue.

This set of points is called the orbit ( 轨道 ) of M0(z0)

6. if they stay inside the Unit circle we mark them in red

M0(z0) , M1(z1) , M2(z2) , M3(z3) ,…, M10(z10) ,…

• 北京景山学校 纪光老师April 2010

19Fractals & Complex Numbers

£

Construction of Mendelbrot in

by iterating the transformation

• 北京景山学校 纪光老师April 2010

20Fractals & Complex Numbers

£

z a z2 + c1. Choose a point C of affix c in the Complex plane.

2. Start from M0(z0) = O in the Complex plane.

3. Build the image M1(z1 = c) of M0(z0) by the above transformation in the coordinates plane.

4. Build the image M2(z2 = c2 + c) of M1(z1= c) by the transformation in the coordinates plane.

Construction of Mendelbrot inby iterating the transformation

• 北京景山学校 纪光老师April 2010

21Fractals & Complex Numbers

£

z a z2 + c5. Continue to apply the transformation to each

new point and mark them in the plane, until you get a sequence of 10 points or more …

6. If the points get off the screen, we mark C in red.

This set of points is called the orbit ( 轨道 ) of C

6. if they stay inside the Unit circle we mark C in black.

O, M1(z1= c) , M2(z2= c2 + c) , M3(z3) ,…, M10(z10) ,…

• 北京景山学校 纪光老师April 2010

22Fractals & Complex Numbers

£

Recommended