6th International Conference on Composite Testing and Model ...Epoxy vinyl ester Derakane Momentum...

Preview:

Citation preview

5/5/2013

1

“Self-sensing of damage in carbonnanotube/vinyl ester composites”

Francis Avilés (speaker)*José de Jesús Kú-Herrera

Alejandro May Pat

Materials Department, Scientific Research Center of Yucatan (CICY) , Mérida, Yucatán, Mexico.

6th International Conference on Composite Testing and Model Identification, Aalborg, Denmark, April 22-24 2013.

*On Sabbatical leave at :Aalborg University, Department of Mechanical and Manufacturing Engineering.Email: faviles@cicy.mx

1

Outline

• Motivation

• Research Overview

• Materials and methods

• Results

• Conclusions

2

5/5/2013

2

MotivationThe addition of small amounts of carbon nanotubes (CNTs) into a polymermatrix can form a conductive percolating network which changes its electricalresistance when is deformed (piezoresistivity). This electrical signal could alsobe used to monitor damage in polymer composites.

Structural health monitoring

P

R L

P

L

3

Coupled electro-mechanical measurements

R/R0

NanocompositeManufacturing(MWCNT/VER)

Correlation between mechanical (-) response

and electrical resistance (R)

Tension and compression testing (quasi-static and low

cycles)

Research Overview

4

5/5/2013

3

Materials and

Methods

5

MWCNT Bayer C150PL = 1-4 m, di ≈ 4 nm, do ≈ 13 nm

Epoxy vinyl ester DerakaneMomentum 470-300

Solution casting

[1] Cyclic tension and compression piezoresistivity of carbon nanotube/vinyl ester composites in the elastic and plastic regimes, J.J. Ku-Herrera, F. Avilés, Carbon, Vol. 50(7), 2012, 2592-2598.

Materials and composite preparation [1]

6

5/5/2013

4

Electrical and piezoresistive characterization

Strain Indicator

Multimeter

Grips

Specimen

R25.4 mm

8 mm R

Electrical conductivity

Tension Compression

7

Results

8

5/5/2013

5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Log 10

e (

e in S

/m)

MWCNTs (% w/w)

Electrical conductivity

Φc ≈ 0.20 wt%

9Electrical percolation obtained between slightly below 0.2 wt. %

MWCNT/VER composites

0 5 10 15 20 25 30 35 400.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R/

R0 (

%)

(MPa)

0.00 0.25 0.50 0.75 1.00 1.25 1.500.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R/R

0 (%)

(%)

0R RK

Tensile piezoresistivity:Quasi-static loading 0.3 wt% MWCNT/VER

R/R0 vs

R/R0 vs MWCNT wt % Gauge factor

0.3 2.60 ± 0.13

0.5 2.44 ± 0.13

1.0 2.31 ± 0.17

0.00 0.25 0.50 0.75 1.00 1.25 1.500

5

10

15

20

25

30

35

40

45

(M

Pa)

(%)

vs

10

Linear piezoresistivity observed at all strain levels before fracture (brittle

polymer composite).

5/5/2013

6

Tensile piezoresistivity: Cycling loading0.3 wt% MWCNT/VER

0 100 200 300 400 500 600 7000

2

4

6

8

10

M

Pa)

Time (s)

0.00 0.05 0.10 0.15 0.20 0.25 0.300

2

4

6

8

10

(M

Pa)

(%)

0 100 200 300 400 500 600 7000.0

0.1

0.2

0.3

0.4

0.5

R/R

0(%)

Time (s)

0 100 200 300 400 500 600 7000.00

0.05

0.10

0.15

0.20

0.25

0.30

(%

)

11

0 2 4 6 8 10 12 14 16 18 20 22 24

0

20

40

60

80

100

120

140

160d

c c'

(%)

(M

Pa)

a

b

o 0

20

40

60

80

100

120

140

160

R

/R0 (

%)

dc'

c

R/R0

a bo

o o-a a-b b-d c-c’

Elastic Yielding Plastic

P

P

Compressive piezoresistivity

12

5/5/2013

7

Compressive piezoresistivity

0 2 4 6 8 10 12 14 16 18 20

-10

0

10

20

30

40

50

60

70

R

/R0 (

%)

(%)

0/R RK

PK EK

o a b

Linear approximation in two zones: ≈ 0-1% and 5-20%13

Compressive gauge factors

MWCNT wt % KE KP

0.3 0.91 ± 0.01 -9.37 ± 1.14

0.5 2.39 ±0.22 -8.40 ± 0.77

1.0 4.55 ±0.35 -3.99 ± 0.24

KEMWCNT(wt%)

KPMWCNT(wt%)

Elastic zone Plastic zone

14

(Contact R) (Tunneling)

5/5/2013

8

Sensing of matrix cracking

15Changes in electrical resistance are sensitive to polymer (matrix) micro-cracking.

Micro-cracking

Compression: Cycling loading

0 50 100 150 200 250 300 350 400 450-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1 R/R0

t (s)

(%

)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

R/R

0 (%

)

0 100 200 300 400 500 600 700 800 900-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25 R/R0

t (s)

(%

)

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.4

R

/R0 (

%)

0 1000 2000 3000 4000-10-8-6-4-202468

10 R/R0

t (s)

(%

)

-20

-15

-10

-5

0

5

10

15

20

R

/R0(%

)

=0.5%

(a)

=1.5%

(b) =10%

0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

120

140

160

vs

(%)

(M

Pa)

0

20

40

60

80

100

120

140

160

R/

R0

(%)

(a)

(b)

(c)

(c)

16

5/5/2013

9

Incremental compression loading0.3 wt% MWCNT/VER

Stress-strainCycling incremental strain

Incremental and permanent R

0 5 10 15 20 250

20

40

60

80

100

120

140

160

180

(M

Pa)

(%)

0.5 1.0 1.5 2.0 4.0 7.0 10 15 20

max(%)

0 5 10 15 20 25

0

50

100

150

200

(%)

max(%) 0.5 1.0 1.5 2.0 4.0 7.0 10 15 20

R/R

0 (%

)

Permanent changes in R can be correlated to irreversible phenomena occurringin the polymer (yielding and damage).

17

Accumulated damage (compression)

PA= Accumulatedplastic strain.

For <2: For >2:

PA=0 RP=0 PA>0 RP>0

0 2 4 6 8 10 12 14 16

0

20

40

60

80

100

120

140

160

180

47 10

15

R

P/R0 (%

)

PA(%)

20

Rp= Permanent R.

18

5/5/2013

10

Conclusions

• Electrical conductivity in MWCNT/VER composites can be achieved for MWCNT weight concentrations as low as 0.2 wt %.

• The piezoresistive behavior of MWCNT polymer composites depend strongly on the loading type and matrix mechanical behavior.

• The tensile piezoresistive behavior of (brittle) MWCNT/VER composites has a linear correlation with the nanocomposite’sdeformation under monotonic and cycling loading.

• The changes in electrical resistance (reversible and irreversible) areable to identify the elastic, yielding and plastic zones of thenanocomposite (compression loading).

• It is possible to correlate the irreversible (permanent) changes ofelectrical resistance to the generation and accumulation of damagein the composite.

19

Thank you!

Questions?

20

Jesús Kú

Chichen Itza Mayan Castle,Yucatan, Mexico

Recommended