5.0 引言 5.1 轨道 , 相互作用与自旋 5.2 原子和分子的磁矩 5.3 晶体的磁矩...

Preview:

DESCRIPTION

5.  磁性与电子态. 5.0 引言 5.1 轨道 , 相互作用与自旋 5.2 原子和分子的磁矩 5.3 晶体的磁矩 5.4 晶体的磁各向异性 5.5 习题. Outline. Energy bands Spin polarization in crystals Magnetic configuration (FM, AFM, … ) and phase transition Noncollinear magnetism Surface magnetism Orbital quench. Outline. Energy bands - PowerPoint PPT Presentation

Citation preview

1

5.0 引言5.1 轨道 , 相互作用与自旋5.2 原子和分子的磁矩5.3 晶体的磁矩5.4 晶体的磁各向异性5.5 习题

5.  磁性与电子态

2

Outline

• Energy bands • Spin polarization in crystals • Magnetic configuration (FM, AFM, …

) and phase transition• Noncollinear magnetism• Surface magnetism• Orbital quench

3

Outline

• Energy bands

• Spin polarization in crystals

• Magnetic configuration (FM, AFM, …) and phase transition

• Noncollinear magnetism

• Surface magnetism

• Orbital quench

4

Symmetry of Atoms and CrystalsIsolated Atom: spherical symmetry reduces 3D to 1D

Crystal: translational symmetry H(r) = H(r + T) leads to Bloch theorem

i(r)= kn (r)= e-ikr ukn(r)with

ukn(r) = ukn(r + T)

Bloch theorem reduces infinite degrees of freedomto integration of finite bands(n) over Brillouin zone(k)

5

Lattice-Reciprocal-FCCxyz(a1) = 0.5, 0.5, 0 xyz(a2) = 0.5, 0, 0.5 xyz(a3) = 0, 0.5, 0.5

xyz(b1) = 1, 1, -1 xyz(b2) = 1, -1, 1 xyz(b3) = -1, 1, 1

Plotting line is through -X-W--K-L-

: (b1,b2,b3)=0,0,0 xyz=0,0,0

X: (b1,b2,b3)=0.5,0,0.5 xyz=0,1,0

W: (b1,b2,b3)=0.5,0.25,0.75 xyz=0,1,0.5

: (b1,b2,b3)=0,0,0 xyz=0,0,0

K: (b1,b2,b3)=0.375,0.375,0.75 xyz=0,0.75,0.75

L: (b1,b2,b3)=0.5,0.5,0.5 xyz=0.5,0.5,0.5

: (b1,b2,b3)=0,0,0 xyz=0,0,0

6

Minimization of LDA EnergyKohn-Sham equation: Hkn(r)= knkn(r)

H = -(1/2)2 + Vc(r) + Vxc(r) Vxc(r) = dExc()/d Vxc

()

Basis expansion: n(r) = i i(r) Cin Matrix eigen-problem: j Hij Cjn = n j Sij Cjn Hij = < i(r)|H|j(r)>

Sij = <i(r)|j(r)>

7

Summation/Integration over States J.D.Pack and H.J.Monkhorst, PRB16, 1748(1977

)

Fermi energy is determined by Ncell = n BZ dk f(Ekn-EF)

= n R\inG IBZ dk f(ERkn-EF)Charge density is determined by(r)= n R\inG IBZ dk f(ERkn-EF) Rkn(r)

= n R\inG IBZ dk f(Ekn-EF) kn(R-1r) Integral replaced by weighted sum over special k

points (SKP) BZ dk = k\inSKP w(k)

8

Total Energy in DFT

E(Z,R,(r)) = i i + (1/2) ZZ/(|R-R|) - (1/2) drdr'(r)(r')/(|r-r'|) + dr [Exc(r)-Vxc(r)(r)]

9

Augmented BasisThe periodic function u is expanded,

ukn = G Ckn(G) G(r)by augmented planewaves (APW), which is atomic orbital

s near atomic core, and augmented by planewave at region far from the cores. With r = r-R, APW is defined as

G(r)=(1/)1/2 e-iGr outside all MT spheresor G(r)=L AL(G)ul(r)YL(r) in -MT spheres

Advantage: Acceptable basis(<100/atom) and exact overwhole space. Disadvantage: Basis depends on k, structure/potential.

10

LAPW BasisO.K.Anderson PR 12, 3060, 1975

D.D.Koeling et al. J.Phys.F 5, 2041, 1975

Linearized basisG(r) = (1/)1/2 e-iGr outside all MT spheresbut G(r) = L [ AL(G) ul(r) + BL(G) dul(r)/dr ] YL(r) in -MT sphere

which is both function value continuous and derivative continuous on the MT sphere boundary.

11

Projector augmented-wave method P. E. Blochl Phys. Rev. B 50, 17953 (1994)

The all-electron wavefunction

can be obtained by the pseudo

wavefunction,

|>=|> + i (|i>-|i>)<pi|>

Here

|i> : core states,

|i> : smoothed core states,

|pi> : projector localized in the

augmentation region and obeys

< i |pi> =ij

12

Planewave Basis and Pseudopotential

The periodic function u is expanded by the planewave basis,

ukn(r)=G Ckn(G)(1/V)1/2 e-iGr

Advantage: Basis is structureless and independent of k.

Disadvantage: Large basis (>1000/atom) if including cores.

Scheme: Pseudopotential makes its nodeless wavefunction identical to the real valence wavefunction beyond r>rc.

13

Pseudopotential - Norm ConserveNorm conserve and self-consistent: ‘Pseudopotentials

that work from H to Pu‘, G.B.Bachelet, D.R.Hamann, and M. Schluter,PRB26, 4199, 1982

14

Pseudopotential – Ultrasoft D.Vanderbilt, PRB 41, 7892 (1990)

This potential is chargestate dependent and

norm does not conserve.

However, it is well suit for plane-wave solid-state calculations, and show promise even for transition metals.

15

Tight Binding Basis (Atomic/Local Orbital)

The periodic function u is expanded ukn = m Ckn(m)km(r)

by atomic (LCAO),Gaussian (LCGO), and MT.orb. (LMTO)

km(r)=(1/N1/2) Te-ik(r-R-T))m(r-R-T)

Advantage: Minimum basis (10/atom) and exact cores.

Disadvantage: Basis depends on k and structure/potential;

Poor approximation at far from nuclei.

16

Slater-Koster Scheme

< km(r)|V|kn(r) > = e-ik(R-R) T eikT <m(r-R)|V|n(r-R-T)>

< m(r-R)|V|n(r-R-T) >= M [Dl

Mm(R+T-R)]* Dl'Mn(R+T-R)

<lM(r-R)|V|l'M(r-R-T)> = M [Dl

Mm(R+T-R)]* Dl'Mn(R+T-R)

Vll'M(|R-R-T|)

17

Slater-Koster Scheme: Canonical Theory O.K.Andersen et al, PRB17, 1209 (1978)

Vll'M(|R-R-T|)

Vss Vsp Vsd

Vpp Vpp Vpd Vpd

Vdd Vdd Vdd

VAB

l'lM(R)=(-1)l+M+1 (l')!(l)!(l+l')![(-1)l+l'VAl'l'VB

ll]1/2

[(2l')!(2l)!(l'+M)!(l'-M)!(l+M)!(l-M)!]-1/2

(RAB/R)l+l'+1

18

Energy Bands of Cu

19

Experimental Cu Bands

20

Density of States of Cu

21

Total Energy vs Cu Lattice Constant

22

Formation Energy of CuAu Alloy

Item Total_energy Cohesive/Formation

(Ryd) Calc(eV) Expt(eV)

Cu_atom -3304.5211

Cu_xtal -3304.8606 4.62 3.49

Au_atom -38074.2247

Au_xtal -38074.5444 4.35 3.81

Cu_xtal+Au_xtal -41379.4050

CuAu_xtal -41379.4174 0.17 0.11

23

Outline

• Energy bands

• Spin polarization in crystals

• Magnetic configuration (FM, AFM, …) and phase transition

• Noncollinear magnetism

• Surface magnetism

• Orbital quench

24

Spin Polarization in Crystals

Energy gain in intraatomic exchange

E = -(1/2) I ij

I : energy cost of generating an antiparallel pair of spins

E(m) = I [ (N/2+m/2)(N/2-m/2)- (N/2)(N/2)]

= -(1/4) I m2

25

Spin Polarization in Crystals

Energy cost of spin polarization of band electrons in a crystal,

E = - dE { EF-(m/2):EF n(E)E

+ dE{EF,:EF+(m/2) n(E)E

m2/n(EF) + O(m4)

Ef

26

Spin Polarization in Crystals

Energy gain over cost due to spin polarization

E = -(1/4)Im2 I + (1/4)( /n(EF)) m2

= -(1/4)(I- /n(EF)) m2

Condition for nonvanishing (spontaneous) atomic moment

I > 1/ n(EF) (Stoner-Wohlfarth criterion)

27

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4-1.10

-1.05

-1.00

-0.95

-0.90

-0.85

-0.80

NM-FM

Calc. Expt.

Enm: non-magnetic Efm: ferromagnetic

E +

254

0 (R

y/at

om)

Lattice constant (A)

Total Energy of FM vs NM bcc Fe

28

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.40.0

0.5

1.0

1.5

2.0

2.5

3.0

NM=FM

calc. expt.

Expt. m= 2.20B/atom

Mo

me

nt o

f b

cc F

e (

B/a

tom

)

Lattice constants (A)

Magnetic Fe Moment in bcc Structure

29

Slater-Pauling Curve: Experiment vs LSDA

30

DFT results for Fe: LDA vs GGAJ. H. Cho and M. Scheffler, PRB (1996)

31

Outline

• Energy bands

• Spin polarization in crystals

• Magnetic configuration (FM, AFM, …) and phase transition

• Noncollinear magnetism

• Surface magnetism

• Orbital quench

32

Collinear Spin Configurations in Layered Structure

33

Spin Configurations and Lattice DistortionJ.T.Wang( 王建涛 ),et al. APL 79,1507(2001)

Layered MnAu

34

Exchange Integral and Lattice Distortion J.T.Wang( 王建涛 ),et al. APL 79,1507(2001)

Layered MnAu

35

Magnetic Phases of Layered MnAu J.T.Wang( 王建涛 ),et al. APL 79,1507(2001)

36

Atomic and Spin Configuration of Layered MnAu

J.T.Wang( 王建涛 ),et al. APL 79,1507(2001)Configuration & Expt & Theo

Atomic & B2 & B2 & L10

Vol/atom (A3) & 16.58 & 16.63 & 16.40 a' (A) & 3.18 & 3.184 & a (A) & & & 4.080 c (A) & 3.28 & 3.280 & 3.938 c/a or c/21/2a' & 0.729 & 0.728 & 0.965

Spin & AF4 & AF4 & AF2

Moment (B) & 4.0 & 3.86 & 3.93

TN (K) & 513 & 528 & 946

37

Outline

• Energy bands

• Spin polarization in crystals

• Magnetic configuration (FM, AFM, …) and phase transition

• Noncollinear magnetism

• Surface magnetism

• Orbital quench

38

Non-collinear Magnetism – HamiltonianM. Uhl et al. JMMM 103, 314 (1992)

Under LSDA

H = [ -(1/2) 2 + V((r)) ] + Vm((r), m(r)) U z U

The spin-1/2 rotation matrix,

cos(/2) ei/2 sin(/2) e-i/2

U(r) = ( )

-sin(/2) ei/2 cos(/2) e-i/2

depending on the local moment direction ((r), (r)

39

Outline

• Energy bands

• Spin polarization in crystals

• Magnetic configuration (FM, AFM, …) and phase transition

• Noncollinear magnetism

• Surface magnetism

• Orbital quench

40

Surface Magnetism: Possible Reduction

Basic fact for Fe, Co, and Ni

spin up band fully filled

spin down band > half filled

Band narrowing:

width Z1/2

Decrease of moment due to

band narrowing

f

41

Surface Magnetism: Possible Enhance

Basic fact for Fe, Co, and Ni

spin up band fully filled

spin down band > half filled

Surface bands are lifted

Enhance of moment due to

level shift

f

42

Surface Dipole and Level Shift

43

Surface Magnetism

Self-consistent calculation gives,

Decrease of moment due to

band narrowing

^^^^

Enhance of moment due to

level shift

44

Giant Surface Spin MomentLSDA spin moment , and surface core level shift of Ni films

LAPW (H.Krakauer et al, 1981 …)

System Shift(eV)

Bulk 12 0.561

(100) center 12 0.619

(111) center 12 0.613

(111) surface 9 0.625 0.291

(100) surface 8 0.675 0.354

(111) monolayer 6 0.892

(100) monolayer 4 1.014

45

Ni Layers on Cu Substrate D.S.Wang( 王鼎盛 ) et al, PRB3, 1340 (1982)

Expt. verified: ‘Dead layer’ is dead

46

Ni Layers on Cu Substrate J.Henk et al, PRB59, 9332 (1999)

47

Outline

• Energy bands

• Spin polarization in crystals

• Magnetic configuration (FM, AFM, …) and phase transition

• Noncollinear magnetism

• Surface magnetism

• Orbital quench

48

Vanishing Orbital MomentFor any time-inversion invariant system, H = -(1/2)2 + V(r), and TH = HT,its non-degenerate eigen-states have vanishing orbital mo

ment.

Proof: HT|>=TH|>=T|>, thus, T|>=|> -<|lz|>=<|Tlz|>=<|lz|> thus, <|lz|>=0 for any z axis i.e., |>=m(Cm|m>+C-m|-m>), and |C-m|=|C-m|

Also for evenly occupied degenerate states.

49

Origin of Orbital Polarization

1. H includes Zeeman term, –gLili.Happl

2. H includes the spin-orbit coupling

Hsl = i [(1/4c2r) V/r] li (r)i = i r li (r)i

when there is spin polarization.

50

Orbital Quench in Magnetic Solids Example: Fe dimer with 6x2 d electons

HOMO: contains two states consisting of |+1> and |-1> orbitals, separated by about

Lower has only slightly more |+1> com

ponent, and orbital moment is quenched from Hund value (2 B per atom) to

orb

Fe Co Ni Atom Hund rule 2 3 3Solid Neutron 0.05 0.08 0.05 XMCD 0.09 0.12 0.05

spin down

spin up

51

Orbital Polarization of Ni Clusters

52

Ni Cluster Geometry

53

Spin Exchange and Orbital Correlation

54

Cluster Polarization: Orbital vs Spin X.G.Wan ( 万贤纲 ) et al. PRB 69, 174414 (2004)

55

Concluding Remarks

• Electron levels, especially those close to Ef, affect spin polarization strongly.

• Interatomic exchange determines the spin configuration.

• Magnetic phase transition could be well simulated

• Orbital quench/polarization depends on spin-orbit coupling

Recommended