19.2 Galvanic Cells 19.3 Standard Reduction Potentials 19.4 Spontaneity of Redox Reactions

Preview:

DESCRIPTION

Chapter 19 Electrochemistry Semester 2/2012. Ref: http://www.mhhe.com/chemistry/chang. 19.2 Galvanic Cells 19.3 Standard Reduction Potentials 19.4 Spontaneity of Redox Reactions 19.5 The Effect of Concentration on Emf 19.8 Electrolysis. 19.2 Galvanic Cells. anode oxidation. cathode - PowerPoint PPT Presentation

Citation preview

19.2 Galvanic Cells

19.3 Standard Reduction Potentials

19.4 Spontaneity of Redox Reactions

19.5 The Effect of Concentration on Emf

19.8 Electrolysis

Chapter 19

Electrochemistry

Semester 2/2012

Ref: http://www.mhhe.com/chemistry/chang

19.2 Galvanic Cells

Spontaneous(natural)redox reaction

anodeoxidation

cathodereduction

Cell = half-cell + half – cell

Oxidation Reduction

Anode Cathode

In Galvanic cell…Zn (s) + Cu2+ (aq) Cu (s) + Zn2+ (aq)

Zn is oxidized to Zn2+ ion

Zn electrode is Anode (Reducing Agent)

Cu2+ is reduced to Cu

Cu electrode is Cathode (Oxidizing Agent)

Galvanic Cells

The difference in electrical potential between the anode and cathode is called:

• cell voltage

• electromotive force (emf)

• cell potential Cell Diagram

Cell Equation Zn(s) + Cu2+ (aq) Cu (s) + Zn2+ (aq)

[Cu2+] = 1 M & [Zn2+] = 1 M

Cell Notation Zn (s) | Zn2+ (1 M) || Cu2+ (1 M) | Cu (s)

anode cathode

Standard Electrode Potentials

Zn (s) | Zn2+ (1 M) || H+ (1 M) | H2 (1 atm) | Pt (s)

2e- + 2H+ (1 M) H2 (1 atm)

Zn (s) Zn2+ (1 M) + 2e-Anode (oxidation):

Cathode (reduction):

Zn (s) + 2H+ (1 M) Zn2+ + H2 (1 atm)

19.3 Standard Reduction Potentials

Standard reduction potential (E0) is the voltage associated with a reduction reaction at an electrode when all solutes are 1 M and all gases are at 1 atm.

E0 = 0 V

Standard hydrogen electrode (SHE)

2e- + 2H+ (1 M) H2 (1 atm)

Reduction Reaction

E0 = 0.76 Vcell

Standard emf (E0 )cell

0.76 V = 0 - EZn /Zn 0

2+

EZn /Zn = -0.76 V02+

Zn2+ (1 M) + 2e- Zn E0 = -0.76 V

E0 = EH /H - EZn /Zn cell0 0

+ 2+2

Standard Electrode Potentials

E0 = Ecathode - Eanodecell0 0

Zn (s) | Zn2+ (1 M) || H+ (1 M) | H2 (1 atm) | Pt (s)

Standard Electrode Potentials

Pt (s) | H2 (1 atm) | H+ (1 M) || Cu2+ (1 M) | Cu (s)

2e- + Cu2+ (1 M) Cu (s)

H2 (1 atm) 2H+ (1 M) + 2e-Anode (oxidation):

Cathode (reduction):

H2 (1 atm) + Cu2+ (1 M) Cu (s) + 2H+ (1 M)

E0 = Ecathode - Eanodecell0 0

E0 = 0.34 Vcell

Ecell = ECu /Cu – EH /H 2+ +2

0 0 0

0.34 = ECu /Cu - 00 2+

ECu /Cu = 0.34 V2+0

• Note:

• The more positive E0 the greater the tendency for the substance to be reduced

• The half-cell reactions are reversible

• The sign of E0 changes when the reaction is reversed

• Changing the stoichiometric coefficients of a half-cell reaction does not change the value of E0

19.4 Spontaneity of Redox Reactions

G = -nFEcell

G0 = -nFEcell0

n = number of moles of electrons in reaction

F = 96,500J

V • mol = 96,500 C/mol

G0 = -RT ln K = -nFEcell0

Ecell0 =

RTnF

ln K(8.314 J/K•mol)(298 K)

n (96,500 J/V•mol)ln K=

=0.0257 V

nln KEcell

0

=0.0592 V

nlog KEcell

0

E0cell > 0 spontaneous reaction

Spontaneity of Redox Reactions

19.5 The Effect of Concentration on Cell Emf

G = G0 + RT ln QG = -nFE

G0 = -nFE 0 -nFE = -nFE0 + RT ln Q

E = E0 - ln QRTnF

Nernst equation

At 298 Kln = 2.303log

-0.0257 V

nln QE0E = -

0.0592 Vn

log QE0E =

19.8 Electrolysis is the process in which electrical energy is used to cause a non spontaneous chemical reaction to occur.

Electrolysis of Water

19.8

Electrolysis and Mass Changes

Quantitative Aspects

Case (i) Na + + 1e Na

1 mol. of electron produces 1 mol of Na Atom(22g)

1 F (96500 C)

Case (ii) Mg 2+ + 2e Mg

2 mol. of electron produces 1 mol of Mg Atom(24g)

2 F (2x 96500C)

Case (iii) Al 3 + + 3e Al

3 mol. of electron produces 1 mol of Al Atom(26g)

3 F (3 x 96500 C)

charge ( C ) = current (A) x time (s)

1 mole of electron = 96500 coulomb

1 mol. of Na atom = 22 g

1 mol. of Mg atom = 24 g

1 mol. of Al atom = 26 g

Recommended