0506-245-Abbas-Different Variants of Aortic Stenosis · Amr E Abbas, MD, FACC, FSCAI, FASE, FSVM...

Preview:

Citation preview

1

Different VariantsDifferent VariantsAmr E Abbas, MD, FACC, FSCAI, FASE, FSVMDirector, Interventional Cardiology Research

Beaumont Health Associate Professor of Medicine,

OU/WB School of MedicineASCeXAM/ReASCeXAM 2018

Boston, MA

Amr E Abbas, MD, FACC, FSCAI, FASE, FSVMDirector, Interventional Cardiology Research

Beaumont Health Associate Professor of Medicine,

OU/WB School of MedicineASCeXAM/ReASCeXAM 2018

Boston, MA

Relevant Financial Relationship(s)

NoneOff Label Usage

None

Relevant Financial Relationship(s)

NoneOff Label Usage

None

2

Mean Gradient (mmHg)

Valve Area (cm2)

Valve Velocity (m/sec)

Mild <25 >1.5 2-2.9

Moderate 25- 40 1.0-1.5 3-3.9

Severe >40 <1.0 > 4.0Bonow RO, et al. Circulation, 2008

Area Gradient MatchArea Gradient Match

iAVA < 0.6 cm/m2 Nishimura, et al. Circulation, 2014

3

Mean Gradient (mmHg)

Valve Area (cm2)

Valve Velocity (m/sec)

Mild <20 >1.5 2 - 2.9

Moderate 20- 39 1.0-1.5 3 - 3.9

Severe >40 <1.0 > 4.0 Nishimura, et al. Circulation, 2014

Area Gradient MismatchArea Gradient Mismatch

iAVA < 0.6 cm/m2Bonow RO, et al. Circulation, 2008

Mean Gradient (mmHg)

Valve Area (cm2)

Valve Velocity (cm/sec)

Mild <20 >1.5 2 – 2.9

Moderate 20-39 1.0-1.5 3 – 3.9

Severe >40 < 1.0 > 4.0Nishimura, et al., Circulation 2014

Reverse Area Gradient MismatchReverse Area Gradient Mismatch

Bonow RO, et al. Circulation, 2008

4

Determining the “True” SeverityDetermining the “True” Severity

Area (cm2)Gradient(mmHg)

Flow Amount/Direction

(l/min)

Pressure Recovery

Doppler Catheterization

Global LV After LoadClinical Presentation

Aortic ValveAortic Regurgitation

Measurement ErrorsMust be Excluded

•GOA Vs. EOA•Doppler Vs. Catheter•Factors affecting Gradient•Area/Gradient Mismatch•Reverse Area Gradient

Mismatch

•GOA Vs. EOA•Doppler Vs. Catheter•Factors affecting Gradient•Area/Gradient Mismatch•Reverse Area Gradient

Mismatch

5

Left Ventricle

GOA

EOA

Aorta

Vena Contracta

Aortic Valve

LVOT

EOACath

B

6

Evangelista Torricelli

1608-1647

Evangelista Torricelli

1608-1647

Georg Simon Ohm

1789-1854

Georg Simon Ohm

1789-1854

Q

RV2V1

A1A2A3

V3

V 1,2&3 VelocityA 1,2&3 AreaQ FlowR ResistanceP1,2&3 PressureD Distance

P2P1

D

P3

Aortic StenosisAS

7

Daniel Bernoulli1700-1782

Daniel Bernoulli1700-1782

P1-P2 = 1/2ρ(V22-V1

2)

P1&V1= proximal to obstructionP2&V2= distal to obstructionρ=mass density of bloodR=viscous resistanceμ = viscosity

Convective acceleration+

ρ ∫max (dv/dt) * ds Flow acceleration+R(μ) Viscous Friction

V1 P1

V2P2

Bernoulli EquationBernoulli Equation

Short TubeNon-LaminarAcceleration

8

Pressure Energy In Ventricle

Pressure Energy In Ventricle

Kinetic Energy

Aortic Valve

Kinetic Energy

Aortic Valve

Pressure Energy

Aorta

Pressure Energy

Aorta

Heat & Friction

Turbulence& Vortices

Lost

Doppler Gradient: ΔPmax

Catheter Gradient: ΔPnet

Pressure Recovery

Pressure Gradient

Doppler/Catheter Concordance

GOA

Doppler Catheter

Catheter Gradient

Doppler Gradient

EOA

9

Upcoming ConceptsUpcoming Concepts• For a given AV GOA

The Gradient can be variableThe EOA can be variable(Derived from gradient)The Area and Gradient may not matchThe Doppler and Catheter measures may

not match

• For a given AV GOAThe Gradient can be variableThe EOA can be variable(Derived from gradient)The Area and Gradient may not matchThe Doppler and Catheter measures may

not match

• Described in 30 subjects; 14 had significant AR• Compared only to Fick and single plane CO

angiography

• Described in 30 subjects; 14 had significant AR• Compared only to Fick and single plane CO

angiography

1985

10

•Described in 10 subjects•Extrapolated to aortic valve•Described in 10 subjects•Extrapolated to aortic valve

• Doppler

•MIG = 4V22 -4V1

2

•MIG= 4V22

• Use MIG = 4V22 -4V1

2

•V1 > 1.5 m/second

•V2 < 3 m/second

• Doppler

•MIG = 4V22 -4V1

2

•MIG= 4V22

• Use MIG = 4V22 -4V1

2

•V1 > 1.5 m/second

•V2 < 3 m/second

B

11

• Catheterization

• Peak to Peak

• Pmean Catheter

• Doppler

• MIG (4V22 -4V1

2)

• Pmean Doppler

• MIG always > PPG

• Pmean Doppler -Pmean Catheter = Prec

• Catheterization

• Peak to Peak

• Pmean Catheter

• Doppler

• MIG (4V22 -4V1

2)

• Pmean Doppler

• MIG always > PPG

• Pmean Doppler -Pmean Catheter = Prec

B

Not Pressure RecoveryNot Pressure Recovery

•LV Pressure: Peak 200 mmHg•Aortic Pressure: Peak 150 mmHg•Cath Peak to Peak: 50 mmHg•Doppler Velocity: 4.5 m/second•Doppler Maximum Instantaneous

Gradient: Peak: 81

•LV Pressure: Peak 200 mmHg•Aortic Pressure: Peak 150 mmHg•Cath Peak to Peak: 50 mmHg•Doppler Velocity: 4.5 m/second•Doppler Maximum Instantaneous

Gradient: Peak: 81

12

Pressure RecoveryPressure Recovery

•Catheterization Gradient = Mean 40 mmHg

•Doppler Mean Gradient = 50 mmHg

•Pressure Recovery = 10 mmHg

•Catheterization Gradient = Mean 40 mmHg

•Doppler Mean Gradient = 50 mmHg

•Pressure Recovery = 10 mmHg

•Area•Flow•Jet Eccentricity•Aortic root diameter•Global LV afterload

•Area•Flow•Jet Eccentricity•Aortic root diameter•Global LV afterload

13

• There is an inverse quadratic relationship: Area & MG

• ∆P = Q2/(K x EOA2)

• There is an inverse quadratic relationship: Area & MG

• ∆P = Q2/(K x EOA2)160

140

120

100

80

60

40

20

250 ml/sec

• Direct quadratic relationship: Flow & MG• Low Flow: SVI < 35ml/m2

• Low Flow rate < 200-250 ml/s

• Direct quadratic relationship: Flow & MG• Low Flow: SVI < 35ml/m2

• Low Flow rate < 200-250 ml/s

160

140

120

100

80

60

40

20

250 ml/sec125 ml/sec

40 mmHg

AVA 0.7 cm2

AVA 1.0 cm2

AVA 1.5 cm2

250 ml/s125 ml/s

14

Left Ventricle

GOA

EOA

Aorta

Vena Contracta

Aortic Valve

LVOT

Gradient: 40 mmHg

Left Ventricle

GOA

EOA

Aorta

Vena Contracta

Aortic Valve

LVOT

Gradient: 24 mmHg

15

A: EDV = 115, ESV = 45, SV= 115-45 = 70 mlBSA = 1.79EF = 70/115 = 60%SVI = 39 ml/m2

B: EDV = 85, ESV = 35, SV= 85- 35= 50 mlBSA = 1.79EF = 50/85 = 60%SVI = 28 ml/m2

A

A

B

B

115 85

3545

EDV

ESV

Systole DiastoleTVI = 20cm

Systole DiastoleTVI = 20cm

Echo = Stroke volumeCath = Flow rate

Similar SV with different flow rates due to different

SEP

Moderate AS will have a lower SEP and a higher flow rate than a patient with severe AS despite similar stroke volume

Flow Rate Stroke Volume

SystolicEjection Period

=

16

• Eccentric Jet Up to 30° Higher Gradient. • Jet squeezed against aorta. More pressure loss &

less pressure recovery, Bicuspid valves/radiationVel 0.7 m/s, MG 23 mmHg, EOA 0.2

• Eccentric Jet Up to 30° Higher Gradient. • Jet squeezed against aorta. More pressure loss &

less pressure recovery, Bicuspid valves/radiationVel 0.7 m/s, MG 23 mmHg, EOA 0.2

Color Jet occupies the entire aorta indicating a central jet

emanating across the AV

Color Jet occupies only ½ of the aorta indicating an eccentric jet

emanating across the AV

• The smaller the aortic root, the less energy loss, the more the pressure recovery, the lower the catheter gradient.

• This effect plateaus at a diameter of STJ 30 mm (area 7 cm2)

• The smaller the aortic root, the less energy loss, the more the pressure recovery, the lower the catheter gradient.

• This effect plateaus at a diameter of STJ 30 mm (area 7 cm2)

17

AS

BPAS

High BP

Low BP

Moderate AS and low compliance = Severe AS and normal compliance

Z VA = SBP + Mean Gradient = (xx) mmHg/mlꞏm-2

Stroke Volume IndexZ VA = 150 mmHg + 26 mmHg = 5.5mmHg/mlꞏm-2

32 ml/m2

18

Courtesy Heidi Connolly

Normal Ejection FractionNormal SV & Flow Rate

AVA<1cm2

ΔPmean>40mmHg

Area Gradient Match

Area/Gradient Mismatch Area/Gradient Mismatch

19

Area Gradient MismatchArea Gradient Mismatch• Measurement Error• Assumption Error• Low Flow/Low Gradient/Low EF

area/gradient mismatch• Low Flow/Low Gradient/Normal

EF area/gradient mismatch

• Measurement Error• Assumption Error• Low Flow/Low Gradient/Low EF

area/gradient mismatch• Low Flow/Low Gradient/Normal

EF area/gradient mismatch

Measurement Errors: LVOT DError Proportional to AVA

Measurement Errors: LVOT DError Proportional to AVA

20

Measurement Errors: LVOT DError Proportional to AVA

Measurement Errors: LVOT DError Proportional to AVA

LVOT diamLVOT TVI cm

AV TVI cm

Area 1 x TVI1 = Area 2 x TVI2.785 ( )2

2.0cm

= AVA x

98

x

25

= 0.8 cm2

= 78.8 / 98AVA

= 0.65 cm2 19%If LVOT diameter 1.8 cm2

21

Measurement Errors: LVOT TVIError Proportional to AVA

Measurement Errors: LVOT TVIError Proportional to AVA

Measurement Errors: AV VTIError Inversely Proportional to AVA

Measurement Errors: AV VTIError Inversely Proportional to AVA

22

Measurement ErrorsCatheterization and DopplerMeasurement ErrorsCatheterization and Doppler

MG 25 mmHg MG 31 mmHg

84 Y/O NYHA III, 3/6 SEM, no S2

Measurement ErrorsCatheterization and DopplerMeasurement ErrorsCatheterization and Doppler

23

Measurement ErrorsCatheterization and DopplerMeasurement ErrorsCatheterization and Doppler

MG 52 mmHgMG 44 mmHg

Flow2

Area2ΔP = 52

12= = 25

• Flow = Area x Velocity x Cc• Velocity = Cv √2g ΔP

Flow2 = Area2 x ΔP

Cv = coefficient of velocity *Note √2g = 44.3 Cc=coefficient of orifice contraction

Aortic Valve Area (cm2)

Mean Gradient(mmHg)

3.0 2.6

2.0 6.6

1.0 26

0.9 32

0.8 41

0.7 53

0.6 73

Carabello BA. NEJM 2002;346:677-682

24

Area Gradient MismatchArea Gradient MismatchLow flow (normal or reduced LVEF)

Mean Gradient <30-40mmHgAVA <1.0cm2

True, Severe AS

Mild-Mod ASLow Flow

(pseudo AS)

Area/Gradient MatchAVA<1cm2

ΔPmean>40mmHg

Area/Gradient MismatchAVA<1cm2

ΔPmean<40mmHg

MIG: 100 mmHg MIG: 36 mmHg

NormalCOP

LowCOP

25

Dobutamine StressProjected AVA

AV Calcium ScoreStrain Imaging

Dobutamine StressProjected AVA

AV Calcium ScoreStrain Imaging

Low Flow/Low Gradient/Low EFLow Flow/Low Gradient/Low EF

Dobutamine StressDobutamine Stress

26

Baseline Dopplerhemodynamics

Mean gradient AV Area

Mean gradient AV Area

True Severe AS (D2) IIa

Pseudo Severe AS

Vmax > 4.0m/sec AVA < 1.0cm2

g g

SVI 27 - 48AVA 0.8 – 0.8 cm2

AV mean gradient 20 – 43 mmHg

True Severe AS (D2) IIa

27

LVOT v = 1 m/secLVOT TVI = 16 .5 cm

LVOT v = 1.5 m/secLVOT TVI = 28.7 cm

SVI 34 – 59 ml/m2AVA 0.9 –1.5 cm2

AV mean gradient 19 – 23 mmHg

Pseudo

Severe AS

•62 y/o male•STEMI and subsequent CABG five years ago

•Recurrent heart failure x 3 months

•62 y/o male•STEMI and subsequent CABG five years ago

•Recurrent heart failure x 3 months

28

2.2cm

TVI = 14cm

Stroke Volume = CSA x TVI = 0.785 ( )2 X

29

Vel= TVI=

0.8m/sec

Vel= TVI=

3.2m/sec

AreaAV0.785 ( 2.2cm) 2 x ( )

=

14cm

57cm

LVOT Aortic Valve

Velocity=0.8m/sTVI=14cm

Velocity=3.2m/sTVI=57cm

LVOT Aortic Valve

Velocity=1.3m/sTVI=24cm

Velocity=5.0m/sTVI=90cm

SV= 53mlAVA=0.9cm2

SV= 91mlAVA=1.0cm2

30

Mean AV Gradient24 – 52mmHg

Valve Area0.9cm2 – 1.0cm2

LV Stroke Volume 53– 91ml

Projected AVAProjected AVA

31

Qmean =Stroke VolumeLV ejection time

= AVArest + VC x (250- Qrest)

Valve Compliance (VC) =AVApeak - AVArest

Qpeak - Qrest

LVOT

Aortic Valve

Velocity=0.8m/sTVI=14cm

Velocity=3.0m/sTVI=56cm

LVOT

Aortic Valve

Velocity=1.3m/sTVI=24cm

Velocity=5.0m/sTVI=90cm

ET=0.31 ET=0.28

SV= 53mlAVA=0.9cm2

Qmean=171ml.s-1

SV= 91mlAVA=1.0cm2

Qmean=325ml.s-1

AVAproj = 0.96cm2

32

Stroke Flow RateStroke Flow Rate

LVOT

Velocity=0.8m/sTVI=14cm

LVOT

Velocity=1.3m/sTVI=24cm

SV= 53mlAVA=0.9cm2

ET=0.31Qmean= 53/0.31 = 171ml.s-1

SV= 91mlAVA=0.9cm2

ET=0.28Qmean= 91/0.28 = 325ml.s-1

33

n Rest AVA, cm2 Stress AVA, cm2 p value

Q < 200 ml/s 48 0.74+0.12 0.89+0.25 <0.001

Q > 200 ml/s 19 0.85+0.09 0.89+0.12 0.19

Interpretation: If normal resting flow rate, the corresponding AVA is likely to be represent the true hemodynamic severity of the stenosis and further “flow correction” with SECHO is not likely required.

J Am Coll Cardiol Img 2015

AV Calcium ScoreAV Calcium Score

Low Flow/Low Gradient/Low EFLow Flow/Low Gradient/Low EF

34

Impact of Aortic Valve Calcification,as Measured by MDCT, on Survivalin Patients with Aortic Stenosis

J Am Coll Cardiol 2014;64:1202-13

Aortic Valve Calcium Burden1. 1651 AU previous study2.>1200 (1600) AU (W), >2000 (3000)AU (M)3. 300 AU/cm2 (W), 500 AU/cm2 (M)4.Less Likely: <800 AU (W), <1600 AU (M)

Strain ImagingStrain Imaging

Low Flow/Low Gradient/Low EFLow Flow/Low Gradient/Low EF

35

J Am Coll Cardiol Img 2014;7:1151-66

CaseCase•75 year old male

• Presents with dyspnea and syncope

• HTN (treated BP 150/75)

• Grade III/VI mid peaking systolic murmur LSB

•75 year old male

• Presents with dyspnea and syncope

• HTN (treated BP 150/75)

• Grade III/VI mid peaking systolic murmur LSB

36

Normal EF Area Gradient MismatchNormal EF Area Gradient Mismatch

• LVEF 55%• AV Mean G26mmHg• AVA 0.8cm2

• AVA index 0.45cm2/m2

• LVEDV 88ml• SVi 32 ml/m2

• LVEF 55%• AV Mean G26mmHg• AVA 0.8cm2

• AVA index 0.45cm2/m2

• LVEDV 88ml• SVi 32 ml/m2

37

• So why is the Flow Low?Preload: Small LV volume (LVH)Contractility: Despite EF normal, contractility (&EF) impaired for degree of LVH

Afterload: Global LV afterload (Valve and Vascular)

• So why is the Flow Low?Preload: Small LV volume (LVH)Contractility: Despite EF normal, contractility (&EF) impaired for degree of LVH

Afterload: Global LV afterload (Valve and Vascular)

Normal EF Area Gradient MismatchNormal EF Area Gradient Mismatch

1. Is the patient symptomatic?(exercise testing)

3. Is the patienthypertensive?2. Is the stenosis

severe?

4. GLS/contractility& Diastolic Function/RWT? 5. Other Causes of Low Flow?

Mitral regurgitation

38

AV Calcium ScoreStrain Imaging

Stroke Flow Rate

AV Calcium ScoreStrain Imaging

Stroke Flow Rate

Low Flow/Low Gradient/NL EFLow Flow/Low Gradient/NL EF

Novel Classification of AS with Normal EF

Novel Classification of AS with Normal EF

39

Reverse Area/Gradient Mismatch

Reverse Area/Gradient Mismatch

Courtesy Heidi Connolly

Elevated Gradient Despite non-critical AS

Reverse Area/Gradient MismatchAVA>1cm2

ΔPmean>40mmHg

40

Causes of Reverse A/G MismatchCauses of Reverse A/G Mismatch

• Errors of Measurement• High Flow• Pressure recovery• Eccentric Jet• Para-valvular Obstruction• Prosthetic-valve specific

• Errors of Measurement• High Flow• Pressure recovery• Eccentric Jet• Para-valvular Obstruction• Prosthetic-valve specific

Errors of MeasurementsEccentric Mitral

Errors of MeasurementsEccentric Mitral

41

Mitral Regurgitant Jet Versus Aortic Stenosis Jet

Mitral Regurgitant Jet Versus Aortic Stenosis Jet

• Mitral regurgitation occupies IVC and IVR• Mitral regurgitation occupies IVC and IVR

High FlowHigh Flow

• Aortic regurgitation• Hyperdynamic states (dialysis, anemia)• Dimensionless Index B

42

Pressure RecoveryPressure RecoveryGOA 1.1 cm2

DopplerPmean = 34 mmHgEOA = 0.6 cm2

CatheterizationPmean = 18 mmHgEOA = 1 cm2

APR= 34-18 = 16

Energy Loss IndexEnergy Loss Index• Energy loss Co-efficient

ELCo = AVA x AAaAAa-AVA

• AVA = aortic valve area, AAa = aortic area• Energy loss index: ELCo/BSA• ELI < 0.52-0.76 cm2 has poor outcomes and severe

AS• More significant with increase flow and moderate

aortic stenosis

• Energy loss Co-efficientELCo = AVA x AAa

AAa-AVA• AVA = aortic valve area, AAa = aortic area• Energy loss index: ELCo/BSA• ELI < 0.52-0.76 cm2 has poor outcomes and severe

AS• More significant with increase flow and moderate

aortic stenosis B

43

Pressure Recovery/High FlowPressure Recovery/High Flow

GOA 1.3 cm2

EOA = 0.6 cm2

AAd = 2.2 cm

AAa = 3.8 cm2

ElCo = 3.8x0.6/3.8-0.6

Eccentric JetEccentric Jet

•Case:•29 y/o male•Carries a diagnosis of Asymptomatic severe AS

•Quit Law School

•Case:•29 y/o male•Carries a diagnosis of Asymptomatic severe AS

•Quit Law School

44

Cardiac Catheterization Pmean = 50 mmHg, AVA 1 cm2

AVA=2.61 cm2

Pmean = 57 mmHgMIG = 91 mmHg

Eccentric JetEccentric Jet

45

Aortic Diameter = 4.0 cm Eccentric Jet

Eccentric Jet: EchoEccentric Jet: Echo

Para-valvular ObstructionPara-valvular Obstruction

•Sub-Aortic membrane•Hypertrophic Obstructive

Cardiomyopathy•Supravalvular Obstruction•Mitral valve Prosthesis

•Sub-Aortic membrane•Hypertrophic Obstructive

Cardiomyopathy•Supravalvular Obstruction•Mitral valve Prosthesis

46

Membrane

AV

AVmax= 4.1 m/sMIG = 65 mmHgPMean= 39 mmHg

Progressive DiseaseOther congenital anomalies in 50%

VSD/PDA/CoarctationShone’s ComplexBicuspid AVleftsided-SVC

Types: Membrane, fibromuscular ridge, Diffuse tunnel narrowing, mitral tissue

May Cause aortic regurgitationTreatment: SurgeryNo symptoms: Catheter LVOT-A peak/Doppler Mean = 50 mmHgSymptoms: Catheter LVOT-A peak/Doppler Mean = 30-50 mmHgAdults may use Doppler Peak > 50 mmHgResection/Konno procedure B

B

47

Alcohol Septal Ablation or SurgeryHigh Risk features

ICD

Non-Familial SporadicWilliam syndrome:

Elfin FacialHypercalcemiaBehavioralDiagnosed by CVS and fetal echo

Familial SporadicCoronary anomaliesTypes: Hour glass, Membrane, Diffuse narrowing: Surgery

B

48

• In addition to AVA and ΔPmean

Flow SVI < 35 ml/m2, Flow rate < 200 ml/s

Flow eccentricity

Pressure Recovery/ AV morphology

• Think of global afterload in AS to the LV: Mixed AV disease/HTN

regardless of symptoms

• Area and Gradient may not match

• Echo/Cath/AV morphology provide complimentary NOT identical

data

• In addition to AVA and ΔPmean

Flow SVI < 35 ml/m2, Flow rate < 200 ml/s

Flow eccentricity

Pressure Recovery/ AV morphology

• Think of global afterload in AS to the LV: Mixed AV disease/HTN

regardless of symptoms

• Area and Gradient may not match

• Echo/Cath/AV morphology provide complimentary NOT identical

data

Multimodality Approach Multimodality Approach

49

CONCLUSIONSCONCLUSIONS• For a given AV GOA

The Gradient can be variableThe EOA can be variable(Derived from gradient)The Area and Gradient may not matchThe Doppler and Catheter measures may

not match

• For a given AV GOAThe Gradient can be variableThe EOA can be variable(Derived from gradient)The Area and Gradient may not matchThe Doppler and Catheter measures may

not match

Recommended