16
DELIVERING QUALITY SINCE 1952. Rigid – Flex Circuit Gerber Layout Guidelines 05.30.14

Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

Embed Size (px)

DESCRIPTION

This webinar is an introduction to Flex and Rigid–Flex Gerber layout design methods and requirements that differ from standard rigid board technology. Prepare to review some of the unique elements of Flex and Rigid–Flex Gerber layout to ensure functionality and mechanically reliability that meets or exceeds the design requirements.

Citation preview

Page 1: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

DELIVERING QUALITY SINCE 1952.

Rigid – Flex Circuit Gerber Layout Guidelines

05.30.14

Page 2: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

2

Rigid – Flex circuits introduce additional design requirements which need to be accommodated at the Geber Layout phase:

– Rigid to Flex Transition Lines

– Layer Stack ups

– Trace Layout in Flex Areas

Introduction

Page 3: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

3

Introduction

Guidelines based on IPC 2223C recommended Rigid – Flex Construction(s):

– Ensures the highest degree of reliability and performance

– Key Elements• Adhesiveless Flex Core

• Selective Flex Area Coverlay

• No Flow Prepreg (rigid area layer lamination)

Page 4: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

4

Definition: Line at which flex layers exit from Rigid area(s)

– Special requirements due to:

• IPC 2223C Selective Coverlay and Material Guidelines

• Manufacturing Methods:

– Rigid Materials (FR4 & Prepreg) are removed from flex areas prior to the layer lamination process

Rigid to Flex Transition Lines

Page 5: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

5

Rigid to Flex Transition Lines:PTH Hole Spacing

0.050” Min. Requirement:– As measured from edge of drilled hole to “Rigid to Flex” transition line(s)

– Prevents PTH holes from being drilled through Selective Coverlay adhesives

– Accounts for manufacturing and material tolerances

Page 6: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

6

Rigid to Flex Transition Lines:Copper Feature Spacing

0.025” Min. Clearance (External Layers only)– Allows for manufacturing methods and tolerances during outer layer

imaging processes

– Accounts for prior removal of rigid materials in flex areas

Page 7: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

7

Rigid – Flex Layer Stack Up Guidelines

Flex Layer Core Thickness(s):

– 0.001” recommended• Improved flexibility, mechanical reliability and bend radius capability

– 0.002” to 0.003” required for impedance controlled designs

Balanced Construction with centrally located Flex Layers Recommended:

– Minimizes potential warp and twist in assembly arrays

– Avoids potential cost adders

– Unbalanced builds possible but should be reviewed with supplier in advance

Balanced Construction Unbalanced Construction

Page 8: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

8

Rigid – Flex Layer Stack UpGuidelines

Same Finished Thickness in all Rigid Areas:– Avoids sequential lamination processes and significant added costs

– Consult with supplier to determine viability

Odd Layer Counts Allowed:

– E.G.: 5 Layer Rigid with 1 or 3 layers flex etc.

Flex Area Layer Count:– Minimize for thinnest possible construction

• Improved flexibility, reliability and bend radius

Flex Layer Copper Weight:– ½ OZ Copper recommended

• Improved flexibility and mechanical reliability• Allows for impedance controlled circuits

– 1 OZ Copper available for higher current carrying requirements

Page 9: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

9

Rigid – Flex Layer Stack UpGuidelines

Paired Flex Layers Structure Recommended:– Eliminates flex adhesives from rigid areas for PTH reliability

– Improves flex area flexibility and mechanical reliability

8 Layer Rigid – 2 Layer Flex 8 Layer Rigid – 4 Layer Flex (Air Gap)

Page 10: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

10

Rigid – Flex Layer Stack UpGuidelines

Impedance Controlled / Shielded Designs:– May require 3 or more flex layers bonded together

– Use of flex adhesives to be minimized to best conform to IPC 2223C

– Potential negative impact on flexibility and bend requirements

– Consult with supplier for best configuration

7 Layer with 3 Flex Layers 8Layer with 4 Flex Layers

Page 11: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

11

Flex Area Trace Layout Guidelines

Offset Traces from Layer to Layer in Flex Area (if possible)– Improves mechanical flexibility by minimizing “I-Beam” effect

– Impedance Controlled and Shielded Designs will not fully allow due to reference plane requirement

Preferred Not Recommended

Impedance Controlled Design

Page 12: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

12

Flex Area Trace Layout Guidelines

Straight / Parallel Trace layout is preferred:– Eliminates potential mechanical stress concentrators in bend areas

– If direction change is required then rounded trace corners are recommended

• Up to 45 degree corners are allowed

• 90 degree corners are not recommended

Page 13: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

13

Our Products

Battery Packs Flex & Rigid-Flex PCB’s User Interfaces

Fans & Motors Cable Assemblies Printed Circuit Boards

Page 14: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

14

Design Centers & Technical Support

Battery Pack & Power Management – Denver, CO User Interfaces – Largo, FL Fans & Motors – Wales, UK PCB’s – New Bedford, MA & Shenzhen, China Flex & Rigid Flex – Toronto, Canada Cable Assemblies – New Bedford, MA

Our Engineering and Design teams are ready to help our customers create world class and cost effective product solutions.

Page 15: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

15

Q&A

Questions?– Enter any questions you may have

in the Control Panel.

– If we don’t have time to get to it, wewill reply via email.

Page 16: Rigid-Flex Circuit Board Gerber Layout Guidelines Webinar

16

Thank YouCheck out our previous webinars at www.epectec.com.

For more information email [email protected].

Stay Connected with Epec Engineered TechnologiesFollow us on our social media sites for continuous technical updates and information: