11
WHITE PAPER © 2011 PLASTIC LOGIC. ALL RIGHTS RESERVED. THIS DOCUMENT IS PLASTIC LOGIC PUBLIC INFORMATION PAGE 1 OF 11 Plastic Logic Technology Overview Beginnings Over the last three decades organic electronics, which is electronics based on carbon rather than silicon, has been extensively researched. In 1998 Professor Richard Friend’s group at the University of Cambridge, UK published a seminal work using an organic transistor to drive an organic light emitting diode 1 . Two years later Plastic Logic was founded to develop and commercialize the successes of the work done by Professor Friend, Professor Henning Sirringhaus and their teams at the Cavendish Laboratory. Plastic Logic soon focused its activity on transistor arrays for displays. Organic materials are typically flexible, lightweight and robust. Plastic Logic decided to exploit these attributes by developing its arrays on a plastic base which would then allow any final display to be lighter and more robust than equivalent siliconbased products. At the same time, teams of researchers began pushing for highquality materials that would meet the rigorous demands of a commercial environment. Several leading materials companies started to put serious effort into refining their materials for use in this new application space and Plastic Logic developed close relationships with many industrial research teams to guide their work and exploit the results at the earliest opportunity. By mid2004 Plastic Logic had developed small area displays with relatively low resolution which were extremely robust, as evidenced by the photographs in Figure 1 a . Figure 1 b: Demonstrating the robustness of Plastic Logic’s displays – note the small bend radius Just over a year later, in late 2005, the company had progressed its technology to large area displays with much higher resolution as shown in Figure 2. 1 Sirringhaus et al, Science (1998) Vol 280 page 17411744

Plastic logic's transistor technology

Embed Size (px)

DESCRIPTION

The presentation shows how plastic electronics technology works.

Citation preview

Page 1: Plastic logic's transistor technology

    WHITE  PAPER  

   © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  1  OF  11    

 

Plastic  Logic  Technology  Overview  

Beginnings    

Over   the   last   three  decades   organic   electronics,  which   is   electronics   based  on   carbon   rather   than  silicon,  has  been  extensively  researched.  In  1998  Professor  Richard  Friend’s  group  at  the  University  

of   Cambridge,   UK   published   a   seminal   work   using   an   organic   transistor   to   drive   an   organic   light  emitting   diode1.   Two   years   later   Plastic   Logic   was   founded   to   develop   and   commercialize   the  successes  of   the  work  done  by  Professor  Friend,  Professor  Henning  Sirringhaus  and   their   teams  at  

the  Cavendish  Laboratory.    

Plastic  Logic  soon  focused  its  activity  on  transistor  arrays  for  displays.    Organic  materials  are  typically  flexible,   lightweight   and   robust.   Plastic   Logic   decided   to   exploit   these   attributes   by   developing   its  arrays  on  a  plastic  base  which  would  then  allow  any  final  display  to  be  lighter  and  more  robust  than  

equivalent  silicon-­‐based  products.    

At   the  same  time,   teams  of   researchers  began  pushing   for  high-­‐quality  materials   that  would  meet  the  rigorous  demands  of  a  commercial  environment.      Several   leading  materials  companies  started  to  put   serious   effort   into   refining   their  materials   for   use   in   this   new  application   space   and  Plastic  

Logic   developed   close   relationships  with  many   industrial   research   teams   to   guide   their   work   and  exploit  the  results  at  the  earliest  opportunity.  

By  mid-­‐2004   Plastic   Logic   had   developed   small   area   displays   with   relatively   low   resolution  which  were  extremely  robust,  as  evidenced  by  the  photographs  in  Figure  1  a  .  

 

 

 

 

 

 

Figure  1  b:  Demonstrating  the  robustness  of  Plastic  Logic’s  displays  –  note  the  small  bend  radius  

Just  over  a  year  later,  in  late  2005,  the  company  had  progressed  its  technology  to  large  area  displays  

with  much  higher  resolution  as  shown  in  Figure  2.  

 

 

                                                                                                                         1  Sirringhaus  et  al,  Science  (1998)  Vol  280  page  1741-­‐1744  

Page 2: Plastic logic's transistor technology

    WHITE  PAPER  

   © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  2  OF  11    

 

 

 

 

Figure  2:    An  example  of  Plastic  Logic’s  displays  in  late  2005  

By  early  2007,  Plastic  Logic  had   identified  a  site   for   its  manufacturing   facility   in  Dresden,  Germany  and   had   begun   the   factory   build.     Ideally   placed   in   the   heart   of   Silicon   Saxony,   Plastic   Logic   has  

drawn  a  high-­‐caliber   team  with   extensive  manufacturing   experience   from   the   surrounding   region,  where  many  silicon  manufacturing  facilities  are  based.  The  teams  in  Dresden  and  Cambridge  worked  closely  together  to  ensure  that  the  transfer  of  the  technology  from  lab  to  fab  would  be  as  smooth  

and  as  efficient  as  possible.    

Only   eighteen   months   later   the   Dresden   manufacturing   facility   opened   its   doors   and   began  producing  flexible  displays  on  a  scale  never  seen  previously  in  the  organic  electronics  community.    

   

Figure  3:    a)  Aerial  image  of  Plastic  Logic’s  manufacturing  facility  in  Dresden  Germany  and  b)  showing  the  size  of  the  motherplates  used  in  the  factory.

 

In   parallel   the   company   has   been   ramping   its   product   development,   marketing,   and   business  development   and   activities   in   the  US   to  ultimately   complete   the   transition  of   Plastic   Logic   from  a  

small  R&D  company,  spun  out  of  academia,  to  a  product-­‐based  organization  with  the  facilities  and  know-­‐how  to  take  technologies  from  the  lab  bench  to  mass  market.    

An  Introduction  to  Plastic  Logic  Technology  

Now  that  the  field  of  organic  electronics  is  firmly  on  its  journey  to  industrial  maturity  it  is  important  to  step  back  and  recognize  the  key  components  in  taking  a  small  scale,  academic  activity  and  scaling  it  to  the  realities  of  a  commercial  environment.    A  balance  between  device  performance  and  ease  of  

manufacture  must  be  struck  for  commercial  success.    

For   the  past   10   years,   Plastic   Logic   has   been   at   the   forefront   of   this   progression—   taking   its   own  organic  transistor  technology  from  a  lab  bench  to  a  high  tech  manufacturing  environment—  and  is  

a)   b)  

Page 3: Plastic logic's transistor technology

    WHITE  PAPER  

   © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  3  OF  11    

therefore   well   placed   to   discuss   the   considerations   from   both   the   research   and   manufacturing  perspectives.      

This   document   will   give   an   overview   of   the   key   considerations   which   frame   the   transistor’s  

performance  and  manufacturing  considerations  based  on  Plastic  Logic’s  learnings.  

Transistors  

Transistors   are   formed   from   three   electrodes,   a   dialectric   and   a   semiconductor.     The   electrodes  control  the  current  flow  by  way  of  the  voltage  applied  to  them.    The  semiconductor  is  the  material  through  which  the  current  flows.  A  schematic  is  shown  in  Figure  4.    

 

 

 

 

 

Figure  4:  A  generic  top-­‐gate  transistor  in  cross-­‐section.  

A  good  transistor  is  analogous  to  a  good  water  tap.    

1) When  you  turn  the  tap  on,  water  soon  starts  to  flow  and  as  you  turn  it  on  a  little  more  the  

water   flows   faster  until   it   is   soon   flowing   very   fast.     Similarly   for   a   transistor,   the   current,  which  is  a  flow  of  electric  charge,  should  begin  to  flow  once  a  small  voltage  is  applied  and  as  you  increase  the  voltage  the  current  should   increase  until  you  have  a  surfeit  of  current  for  

your  application.  2) When  you   turn   the   tap  off,   it   shouldn’t  allow  any  water   to   leak  out.     Similarly  a   transistor  

should  not  allow  current  to  flow  when  it  is  off.    

In  the  vast  majority  of  display  applications  the  transistors  use  silicon  as  the  semiconductor  because  it  is   a   well-­‐established   technology   that   can   provide   ample   current   to   drive   the   LCD,   OLED,  electrophoretic   or   whichever   other   screen   technology   is   being   used.     However,   silicon   has   its  

drawbacks   in   terms   of   cost,   ease   of   device   manufacture   and   fragility.     In   these   areas   organic  electronics   offer   an   advantage.     Made   primarily   from   materials   which   can   be   processed   from  solution,   the   transistors   are   inherently   simpler   and   cheaper   to  manufacture.     Even   though   today  

silicon   can   have   higher   performance   than   organic   semiconductors,   there   are   many   applications  where   the   performance   advantage   of   silicon   is   not   required   and   where   an   organic   electronics  solution  is  more  cost  effective.        

The  key  metric  of  semiconductor  performance  is  mobility.    This  is  effectively  a  measure  of  the  speed  

at   which   the   charge   can   flow   in   the   semiconductor.     The   required  mobility   is   dependent   on   the  application.  The  faster  the  application,  the  higher  the  mobility  needed.  For  a  television,  the  picture  changes   rapidly   and  hence   the  mobility   required   is   high.    Where   the   image   changes  more   slowly,  

such  as  in  an  e-­‐reader,  the  mobility  can  be  much  lower.    

Page 4: Plastic logic's transistor technology

    WHITE  PAPER  

   © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  4  OF  11    

The  typical  mobility  of  crystalline  silicon   is  on  the  order  of  1000cm2/Vs  but  many    applications  use  poly-­‐crystalline   silicon   (mobility     >50cm2/Vs   )   or   amorphous   silicon   (mobility   ~0.5cm2/Vs)   as   the  

performance  is  still  adequate  but  the  cost  of  manufacture  is  greatly  reduced.        

Within  organic  transistors  there  is  also  a  mobility  range  available.    Pentacene,  which  is  a  crystalline  material,  can  achieve  mobilities  of  10cm2/Vs  but  it  is  difficult  to  process  on  any  meaningful  scale.    At  the  other  end  of  the  spectrum,  fully  amorphous  polymer  devices  are  simple  to  manufacture.    They  

can  be  made  and  driven  in  air,  without  encapsulation,  and  have  a  whole  host  of  attributes  which  are  extremely   desirable   in   a   manufacturing   context,   but   they   can   only   reach   mobilities   of   around  0.05cm2/Vs.     Nevertheless   this   is   still   sufficient   for   a   number   of   applications.   For   example,  

electrophoretic   displays,   which   are   used   to   make   e-­‐paper   and   use   reflected   light   rather   than   an  internal   backlight,   can   be   successfully   driven  with  mobilities   in   this   range.   The  mobility   values   of  various  semiconductors  are  summarised  in  Figure  5.  

 

 

Figure  5:  Mobility  levels  of  various  semiconductors.  

Much   is  made   in   the   academic   literature   about   high  mobility   devices   and   often   this   is   the  metric  which  denotes  whether  or  not  a  device  is  a  success.    However,  the  highest  mobility  devices  are  often  

made  in  nitrogen  environments  using  toxic  or  expensive  solvents  and  using  processes  which  are  slow  and   inherently  small  scale.  Such  devices  are  of  no  use   in  commercial  products.    Consistent  devices  are  needed,  made  from  materials  which  are  easy  to  manufacture  on  a  large  scale,  at  a  sensible  cost,  

with  good  reproducibility  and  which  are  easy  to  process  in  air.    This   is  often  forgotten  in  the  quest  for  headline  mobility  values.      Fortunately,  over  the  last  few  years  there  has  been  increasing  effort  on   parameters   other   than   mobility.   Now   that   materials   manufacturers   are   becoming   more  

acclimated   with   industrial   requirements,   materials   are   starting   to   appear   which   are   closer   to  pentacene   in   performance   whilst   retaining   many   of   the   desirable   processing   attributes   of   the  amorphous  materials.     This  development  will   open  up  display  applications  beyond  electrophoretic  

into  LCD  and  OLED  displays.    Additionally  this  advancement  will  enable  organic  electronics  use  in  a  number  of  non-­‐display  applications  such  as  logic.        

Source:  A.  Salleo  

 

Page 5: Plastic logic's transistor technology

    WHITE  PAPER  

   © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  5  OF  11    

Mobility  isn’t  the  only  factor  which  determines  the  current  that  is  available.  The  size  of  the  transistor  is  also  important.    If  the  transistor  is  large  enough  then  a  high  current  can  be  achieved  even  with  a  

low  mobility.    

In  practice,  the  space  available  for  the  transistor  is  usually  limited.    For  example,  a  laptop  screen  is  backlit   and   the   light   must   pass   through   the   transistor   array   to   the   user.     The   transistor   is   not  transmissive  and  hence  needs  to  be  as  small  as  possible  if  the  front-­‐of-­‐screen  performance  is  not  to  

be   impaired.     In   an   electrophoretic   application,   where   reflected   light   is   used,   the   size   of   the  transistor   will   not   affect   the   user   experience   and   this   substantially   relaxes   the   size   constraint,  allowing  the  devices  to  be  much  larger  and  consequently  allowing  the  transistor  mobility  to  be  much  

lower.      There  are  still  limits  however.    For  example,  in  active  matrix  displays  at  least  one  transistor  is  required  to  drive  each  pixel.    Therefore,  in  a  display  with  a  resolution  of  200  pixels  per  inch  all  of  the  requirements  for  the  pixel  need  to  fit  within  a  space  127  µm  x  127  µm  in  size.    

In  an  ideal  transistor  the  current  would  begin  to  flow  once  a  small  voltage  has  been  applied  to  the  device   to   turn   it   on.     Usually,   however,   there   is   a   resistance   preventing   current   flow   when   the  voltage  begins  to  be  applied.    This  resistance  is  caused  by  poor  physical  or  electrical  contact  between  

the   semiconductor   and   the   electrode,   known   as   contact   resistance,   and/or   by   the   bulk   of   the  semiconductor  hindering  the  charge  as  it  travels  to  the  semiconductor/dielectric  interface  where  the  

charge  flow  occurs.      

In  order  for  current  to  flow  the  voltage  must  be   increased  to  overcome  the  resistance.  The  size  of  the  resistance  is  especially  important  in  mobile  applications  because  the  greater  the  voltage  that  is  required  to  obtain  a  useful  current,  the  quicker  the  battery  will  run  down.    It  is  therefore  desirable  to  

minimize   any   resistance   as   far   as   possible,   by   appropriate   choice   of   materials   and   careful  consideration  of  the  cleaning  methods  and  device  processing  methods  employed.      

It   is  also  wasteful   if   a  high  voltage   is  needed   to   turn   the   transistor  off  as   this  also   requires  power  which  will  shorten  the  battery  run  time.    Thus  it  is  preferred  if  the  transistor  is  off  with  no  significant  

current   flow   when   no   voltages   are   applied.     Additionally,   a   high   current   flow   with   only   minimal  voltage   increase   is   optimum  so   the  device   should   switch   from  off   to  on  with  only   a   small   applied  voltage.      

The   materials   choice   for   each   of   the   components   of   the   transistor   (source,   drain,   gate,  

semiconductor  and  dielectric)  can  have  significant  implications  for  its  performance  and  the  relative  ease  that  charge  can  flow.  The  source  and  drain  electrodes  must  be  chosen  so  that  charge  can  flow  easily   from   the   source   through   the   semiconductor   to   the   drain   when   the   transistor   is   on.     The  

dielectric  must   also  be   carefully   chosen  as   the  wrong  dielectric   can   reduce   the  device  mobility  by  several   orders   of   magnitude   which   would   render   the   device   worthless.     Plastic   Logic   has   long    realized   the   importance   of   the   dielectric   choice   and   has   extensive   experience   in   matching   the  

dielectric   to   the   semiconductor.     Materials   suppliers   are   now   also   seriously   investigating   the  dielectric  selection  to  provide  the  combination  of  dielectric  and  semiconductor  to  device  companies  rather  than  just  providing  the  semiconductor,  which  was  previously  the  case.    

From  this  discussion  it  is  clear  that,  when  designing  a  transistor  for  the  mass  market,  mobility  is  only  

part   of   the   story.   The   ease   at   which   the   device   can   be   turned   on   and   off   is   also   important   and  depends  on  the  choice  of  materials.  However,  there  are  yet  further  considerations  when  the  leap  is  

Page 6: Plastic logic's transistor technology

    WHITE  PAPER  

   © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  6  OF  11    

made  from  the  individual  transistor  to  the  active  matrix  array  for  a  display  application.    For  example,  in  arrays,  device  uniformity  is  key.    It  is  expected  that  devices  will  perform  similarly  to  one  another,  

otherwise  visual  differences  may  be  observable  in  the  resultant  display.  Operational  stability  is  also  required   so   that   the   array   continues   to   function   predictably   throughout   its   life,   with   all   of   the  individual  devices  aging  consistently  regardless  of  how  they  have  been  driven.      

Active  Matrix  Arrays  for  Display  Applications  

Active  matrix  arrays  consist  of  a  series  of  transistors  laid  out  in  a  grid.    The  isolated  gate  line  shown  

in  Figure  4  is  extended  to  connect  all  transistors   in  the  same  row  and  the  source  line  in  Figure  4  is  extended   to   connect   all   the   transistors   in   the   same   column.   This   allows   each   transistor   to   be  uniquely   addressed.     These   arrays   can   then   be   used   to   drive   display   media,   for   example,  

electrophoretic  media   (such  as  E   Ink),   LCD  or  OLED.   In   the  simplest  architecture,  each  pixel  within  the   display   is   controlled   by   one   transistor   and   if   the   transistor   is   switched   on   then   the   pixel   will  switch   and   otherwise   will   not   switch.   A   schematic   is   shown   in   Figure   6a   with   the   display   pixels  

overlaid  in  Figure  6b.  

Figure  6:  a)  A  transistor  array  and  b)  Display  pixels  overlaying  the  transistor  array  

Voltage   is   applied   to   the   first   gate   line   and   concurrently   each   source   line   in   parallel,   this   is   then  repeated  with  the  second  gate   line  and  so  on  until  all   the  transistors  have  been  addressed  and  all  

the  pixels   are  on  or  off   as   required   for   the   image.      Because   the  millions  of   transistors  within   the  array  are  addressed  one  row  at  a  time,  any  one  transistor  is  only  addressed  for  a  very  short  period.    In   the   example   in   Figure   6b,   voltages   are   applied   to   turn   on   the   TFT   at   the   Source-­‐2   Gate-­‐2  

intersection  (S2G2)  and  change  the  associated  pixel  to  its  on  state,  which  is  white,  and  then  applied  to  S4G3  and  finally  S2G4  to  change  their  pixel  colors  to  white.  The  remaining  transistors  are  left   in  their  off  state  and  the  pixels  remain  black.    

LCD  color  displays  use   this  basic  principle  and  then  use  color   filters  distributed   in  a  pattern  across  

the  display  to  give  red,  green  and  blue  pixels  as  well  as  white  ones.    This  methodology  can  also  be  used   for   reflective   technologies   although   there   are   also   other   device   architectures   that   can   be  employed.    

The  gate   lines   and   source   lines   running  across   and  down   the   transistor   array   can   form   transistors  

other  than  those   in  the  array   if  the  array   is  poorly  constructed.  These  unwanted  transistors,  called  parasitics,   can   cause   the   display   pixels   to   turn   on   when   they   should   be   off.     It   is   important   that  

a)   b)  

Page 7: Plastic logic's transistor technology

    WHITE  PAPER  

   © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  7  OF  11    

careful  consideration  is  given  to  where  connections  are  routed  and  how  the  devices  are  built  up  so  that  parasitic  devices  are  avoided.      Plastic  Logic  has  extensive  knowledge  in  array  design  to  minimize  

the  impact  of  parasitic  devices.    

Parasitic  transistors  are  not  the  only  source  of  unwanted  current.    Transistors  within  the  array  can  also  leak  current  to  one  another  so  it  is  important  to  ensure  there  is  no  path  for  the  current  to  travel  between  neighboring  devices.        

While  we  have  focused  on  transistors,  these  are  not  the  only  devices  within  the  array  and  the  other  

components  must  not  be  neglected.  During  the  time  that  the  transistor   is  not  being  addressed  the  charge   it  produced  during  the  address  time  needs  to  be  retained  until   it   is  next  addressed.    This   is  achieved  by  the  use  of  a  storage  capacitor  which  comprises  two  plates  separated  by  a  dielectric.  The  

drain  pad  of  the  transistor  makes  up  one  of  the  plates  of  the  capacitor.  The  cross-­‐section  is  shown  in  Figure  7.  

 

Figure  7:  Cross-­‐section  of  TFT  and  capacitor  combination  

The  metric  for  the  capacitor  is  known  as  capacitance.    The  capacitance  is  a  measure  of  the  ability  of  the  capacitor  to  store  charge  and  is  determined  by  the  capacitor’s  area,  the  separation  of  the  plates,    

and  a  measure  of  the  dielectric  known  as  the  dielectric  constant.    

For   any   given   capacitance   the   area   of   the   capacitor   can   be   reduced   if   the   dielectric   constant   is  increased.    As  space  is  at  a  premium  within  the  array  it  would  be  ideal  to  have  a  dielectric  with  a  high  dielectric   constant   so   that   the   capacitor   can   be   as   small   as   possible.     Unfortunately  most   organic  

transistors   have   relatively   small   dielectric   constants,  when   compared   to   inorganic   transistors,   and  consequently  the  capacitor  structure  is  often  larger  than  would  ideally  be  the  case.    The  competing  requirements   of   the   transistor   and   the   capacitor   present   one   of   the   problems   that   has   to   be  

addressed   for  success   in   the  displays  market.  There  are  several   routes   to  solve   the  problem,  all  of  which  present  challenges.    

1) The   transistor   could   be   shrunk   to   allow   more   space   for   the   capacitor,   although   this   will  

increase  the  mobility  requirement.    

2) The  dielectric  used  could  have  a  high  dielectric  constant  so  that  the  capacitor  can  be  small,  

but  this  will  impair  transistor  performance.        

Page 8: Plastic logic's transistor technology

    WHITE  PAPER  

   © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  8  OF  11    

3) A   capacitor   and   the   transistor   could   be   processed   such   that   they   use   different   dielectrics  from  one  another,  although  this  will  certainly  add  complexity  and  consequently  cost  to  the  

system.    

As  was  previously  stated,  materials  suppliers  have  recently  started  to  realize  that  the  dielectric  must  also   be   carefully   optimized   to  match   the   semiconductor   and   in   so   doing  maximize   the   transistor  mobility.    Materials  manufacturers  also  need  to  extend  this  thinking  and  realize  that  the  transistor  is  

not  the  only  component  in  the  array  and  that  developing  a  semiconductor  that  could  work  with  high  dielectric  constant  materials  would  be  very  desirable.      

The  array  structure  is  complicated  further  because  the  bottom  capacitor  plate  (the  drain  pad)  needs  to  be  in  direct  contact  with  the  display  media.    As  shown  in  Figure  7,  the  drain  pad  is  underneath  all  

of   the   other   layers   so   it   therefore   has   to   be   brought   to   the   top   of   the   stack.   This   is   achieved   by  adding  an  interlayer  dielectric,  making  a  hole  in  the  stack  of  layers  and  adding  a  metal  or  polymeric  conductor  on  top  to  effectively  move  the  bottom  capacitor  plate  from  the  bottom  of  the  stack  to  the  

top.    

A  generic  repeat  unit  in  the  active  matrix  array  would  therefore  be:  

 

Figure  8:  a)  Plan  view  of  a  generic   repeat  unit   in  an  active  matrix  array,  b)  cross-­‐section  of   repeat  unit.  

Thus   once   the   transistors   are   incorporated   into   a   real-­‐world   application   there   are   many   aspects  

which  must  be  considered  and  not   just  the  design  and  performance  of  the  transistor   itself.    This   is  true  not  only  in  displays  but  also  in  non-­‐display  applications  such  as  sensors  or  RFID.    

Non-­‐Display  Applications  

Transistors   can   either   be   p-­‐type   or   n-­‐type   depending   on  whether   they   are   turned   on   by   applying  negative  voltages  or  positive  ones.  For  display  applications  an  active  matrix  array  can  be  produced  

using  transistors  which  are  either  all  p-­‐type  or  all  n-­‐type.    Logic  circuits,  however,  are  most  efficient  if  both  n-­‐type  and  p-­‐type  transistors  are  available.    

To  date   the  vast  majority  of  organic   transistors  are  p-­‐type  because  p-­‐type  semiconductors  are   the  most  advanced  in  terms  of  our  understanding  and  also  in  terms  of  the  key  performance  metrics  such  

as  mobility.    However  n-­‐type  transistors  would  bring  many  advantages  even  into  the  displays  space.      

a)   b)  

Page 9: Plastic logic's transistor technology

    WHITE  PAPER  

   © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  9  OF  11    

A  display  requires  drivers  in  order  to  address  the  pixels  correctly  and  in  Plastic  Logic’s  case  all  of  the  driving  electronics  which  surround  the  active  matrix  array  are  made  from  silicon.    Some  of  this  could  

be  replaced  by  organic  transistors   if  both  p  and  n-­‐type  materials  were  available.    This  would  allow  the  advantages  of  organic  materials,  namely  ease  of  processing,  cost  and  robustness  to  be  utilized  in  more  of  the  system.  Some  companies  are  beginning  to  seriously  develop  n-­‐type  materials  and  Plastic  

Logic   is   actively   engaged   in   the   testing   and   development   of   these  materials   to   ensure   they   reach  commercial  viability  as  soon  as  is  practicable.    

In   addition   to   n-­‐type   devices,   Plastic   Logic   has   also   given   significant   consideration   into   how   the  devices  are  constructed  so  that  unwanted  capacitances  and  currents  can  be  removed.    Plastic  Logic’s  

IP   portfolio   extends   broadly   over   high-­‐resolution   printing   methods,   where   sub-­‐micron   channel  lengths   have   been   demonstrated,   and   fine-­‐feature   patterning   techniques,   both   of   which   help   to  reduce  parasitics  and  improve  the  device  speed.    

As  the  transistor  mobility  improves  for  commercially  viable  devices  in  both  p  and  n-­‐type  devices,  and  

deposition   methods   enable   fine   features   and   low   parasitics,   it   becomes   possible   for   organic  electronics  to  move  into  other  application  areas  such  as  RFID,  Sensors,  ASIC,  and  smartcards.        

Reliability  

Of   paramount   importance   when   discussing   any   commercial   application   is   the   reliability   of   the  electronic   components   in   the   product   and   the   reliability   of   the   process   used   to  make   them.     The  

product  will  not  be  a  commercial  success  if  the  transistors  stop  working  when  they  are  exposed  to  heat,   light,  water,   or  wear  out   after   being  operated   for   a   few  weeks.     In   the   case  of   displays   this  would  create   ‘dead’  pixels  which  remain  permanently  off  and   in   logic  circuits   it  would  prevent  the  

circuit   from  operating   correctly   and   cause   the  product   to   fail.  While   it  would  be  desirable   for   the  transistors  to  always  perform  the  same  way  in  all  environments  and  all  operating  conditions  this   is  

unrealistic.    Temperature  and  moisture  will  change  the  device  behaviour  not  only  in  organic  devices  but   in   silicon   and  other   semiconductors   too.     Additionally,   as  with  most   things,   extensive  use  will  cause  degradation  over  time.    When  designing  a  product  it  is  important  to  investigate  the  operation  

of   the   devices   in   a   range   of   environments   and   under   a   range   of   operating   conditions   which   are  specific   to   the  application   in  question.     The  changes   to   the  device  performance  caused  by  varying  these   factors   can   then  be   accounted   for   in   the  design  of   the  devices   such   that   it   doesn’t   cause   a  

difference   in   the   visual   performance   of   the   display   or   the   operation   of   the   logic   circuit.     When  completing   such   a   design   it   is   important   to   remember   that   it   is   the   performance   of   the   worst  transistor  that  is  of  most  interest.    The  worst  transistor  in  the  display  must  still  be  functional  at  the  

end  of  the  product  life  and  therefore  the  worst  transistor  dictates  the  pixel  design.    If  the  product  is  to  reach  its  full  potential  and  thereby  maximize  revenue  for  the  manufacturer,  uniformity  across  all  the  devices  within  the  display  is  key.    

The   importance   of   uniformity   is   also   clear   when   considering   how   the   products   will   be   tested   to  

ensure   they   are   fit   for   purpose.   It   is   impossible   to   fully   test   every   device   in   every   product   and  therefore  it  is  important  that  the  transistor  behaviour  is  consistent  and  predictable  such  that  a  basic  test  will  show  whether  the  product  will  work  as  expected.      

Again  this  highlights  the  importance  of  using  materials  which  can  be  easily  mass-­‐produced  and  are  

well  understood  so  that  the  variability  between  devices  is  minimized.      

Page 10: Plastic logic's transistor technology

    WHITE  PAPER  

   © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  10  OF  11    

It   is   not   only   variability   in   the   materials   which   can   cause   variation   in   the   device   performance.    Variability  in  the  process  can  have  the  same  effect  and  hence  the  manufacturing  process  needs  to  be  

robust  and  repeatable.  An  unreliable  process  will   reduce  yield,   increase  cost  and  make  forecasting  product  availability  difficult.  This  needs  to  be  considered  at  the  outset,  in  the  initial  device  design,  as  a   complicated   and   intricate   process  will   be   harder   to  maintain   than   a   straightforward   and   simple  

one.    

Manufacturing  

The   requirements   and   intricacies   of  manufacturing   are  worthy   of   a   document   in   their   own   right.    Here,  a  couple  of  examples  are  used  to  give  a  flavor  of  some  of  the  considerations   involved   in  the  transition  from  a  lab-­‐based  environment  to  a  manufacturing  one.  

When  moving   from  an  R&D  environment   to  manufacturing  every  minutia  has   to  be  validated  and  

understood.     Issues   that   affect   a   couple   of   displays   in   the   lab   could   wipe   out   whole   batches   of  displays   in  a   factory,  which  would  be  extremely   costly.     Thus   it   is   important   to  understand  all   the  parameters  so  that  issues  can  be  rectified  quickly  with  minimal  impact  on  production.    

As   an   example,   one  major   consideration   is   display   build   time.     In   a   lab,  where   displays   are   being  

processed  one  at   a   time,   tight   time   constraints   can  be   accommodated.     For   example,   if   one   layer  cannot  be  exposed  to  air  for  more  than  an  hour  or  one  clean  or  treatment  process  wears  off  after  ten   minutes,   then   displays   can   be   moved   from   one   station   to   another   quickly   in   order   to  

accommodate  this  criterion.    In  a  manufacturing  facility  however,  such  tight  time  constraints  cause  complexity   because   displays   are   usually   processed   in   relatively   large   batches   using   automated  equipment,  meaning  that  any  one  display  must  wait   for  all   the  other  displays  ahead  of   it  before   it  

goes   through   a   particular   process.     Any   delay   could   potentially   push   large   numbers   of   displays  beyond  the  allowable   time  between  process  steps.    Consequently  any   time  criticalities  need   to  be  

fully   understood,   not   only   so   batches   are   processed   through   genuinely   critical   steps   within   the  allotted   time  but   also   so   perfectly   good  batches   are   not   scrapped   for   failing   to  meet   an   arbitrary  time  constraint.    

A   second   issue   in  moving   from  the   lab   to  manufacturing   is  how  to   scale   the  processing  of   flexible  

substrates  to  a  size  not  previously  used  in  industry.    The  manufacturing  of  organic  electronic  devices  on   flexible  substrates   is  still   in   its   infancy.    Equipment  suppliers  are  used  to  sheet   fed,  glass  based  products   and   their   tools   are   designed   with   rigid,   inflexible   substrates   in   mind.     Plastic   Logic  

addressed  this  conundrum  by  laminating  its  flexible  substrate  to  glass  so  that  it  could  be  processed  as   if   it  were   glass.   This  minimized   the   equipment  modifications,   and   removed   the   challenge   from  each   and   every   tool   supplier,   who  might   each   have   different,   and   potentially  mutually   exclusive,  

ways  of  addressing  the  issue,  and  moved  it  squarely  back  to  Plastic  Logic.    This  allowed  Plastic  Logic  to  develop  unrivalled  expertise  and  competency  in  the  handling  and  processing  of  flexible  substrates  and  their   lamination  to  glass  and  facilitated  a  deep  understanding  of  how  the  substrate   is  affected  

by  factors  such  as  temperature,  chemicals  and  humidity,  which  is  invaluable  information  not  only  at  the  lamination  stages  but  for  all  of  the  other  processing  steps.These  examples  help  to  show  that  to  successfully  progress  out  of   the   lab  and   into  a   factory   there  are  not  only   scientific   considerations,  

such   as   how   the   transistor   degrades   or   whether   devices   are   uniform,   but   also   practical  considerations,  which  are  every  bit  as  important  and  which  must  also  be  addressed.    

Page 11: Plastic logic's transistor technology

    WHITE  PAPER  

   © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  11  OF  11    

Conclusion  

In   a   commercial   environment   it   is   not   enough   to   design   a   transistor   purely   on   the   basis   of   high  mobility.    The  optimum  transistor  is  the  one  which  can  be  processed  simply,  affordably,  consistently,  

and  which  has  a  performance  that  is  sufficient  for  the  task  in  hand.    Additionally  the  requirements  of  the   other   components   of   the   system,   for   example   the   capacitor   in   the   display,   must   also   be  accounted   for   right  at   the  outset  of   the  design.  This  ensures   that   the  design  optimizes   the  system  

rather  than  any  individual  component.    In  designing  a  system,  Plastic  Logic  understands  the  balance  that  must   be   struck   between   the  myriad   of   influencing   factors,   and   this   is   critical   to   commercial  success.    

Plastic  Logic  has  unrivalled  expertise  in  developing  organic  electronics  for  consumer  products  and  in  

such  a  rapidly  changing  technology  environment  it  is  vital  to  remain  at  the  forefront  of  research  and  development   for   early   integration   of   new   features   and  hence   is   a   competitive   advantage.     Plastic  Logic   is   devoting   significant   resources   to   the   integration   of   a   compatible   color   technology   and  

optimum  front-­‐of-­‐screen  performance.  Plastic  Logic   is  also   focused  on  the  continued  development  of  the  p-­‐type  transistors  in  its  array,  using  materials  with  similar  performance  to  amorphous  silicon.    For  further  cost  benefit  and  feature  enhancement  it  is  also  developing  n-­‐type  transistors  which  will,  

when   integrated  successfully,  expand  the  functionality  of  organic  electronics  beyond  the  transistor  array  and  into  the  surrounding  logic  circuits.    

In  Plastic  Logic  the  research  teams  are  highly  aligned  with  the  manufacturing  engineers  to  procure  suitable   equipment   that   can   meet   the   challenges   of   mass   manufacture,   both   in   Dresden   and   in  

Plastic   Logic’s   planned   second   manufacturing   facility   in   Russia.     Close   alignment   ensures   rapid  inclusion  of  new  advances  into  the  end  product.  

This  work  will  ensure  that  Plastic  Logic  continues  to  advance  its  technology  platform  for  the  future.      

 

 

 

 

 

 

 

 

 

Plastic Logic Inc. Headquarters 650 Castro Street, Suite 500 Mountain View, CA 94041 USA Phone: +1 (650) 584-2100 Fax: +1 (650) 584-2101