70
Lecture II. . Insulators Charge Transport Theory, narrow bands Delocalized (Bloch) Wave Functions Localized Wave Functions Excitons Peirels Distortion (1D systems)

Lecture 2 oms

Embed Size (px)

Citation preview

Page 1: Lecture 2 oms

Lecture II.

. Insulators

Charge Transport Theory, narrow bands

Delocalized (Bloch) Wave Functions

Localized Wave Functions

Excitons

Peirels Distortion (1D systems)

Page 2: Lecture 2 oms

Review of Electronic Properties of Solids

Free Electron Fermi Gas

Page 3: Lecture 2 oms

•Electron in a box: example

Electrons are sufficiently delocalized in

•conjugated molecules that they can be

•considered as an electron box

Electronic absorption of β-carotene

0.294nm

Page 4: Lecture 2 oms
Page 5: Lecture 2 oms
Page 6: Lecture 2 oms
Page 7: Lecture 2 oms
Page 8: Lecture 2 oms
Page 9: Lecture 2 oms
Page 10: Lecture 2 oms

Energy Bands, Semiconductors, Doping

Page 11: Lecture 2 oms

Hydrogen Molecule

Page 12: Lecture 2 oms
Page 13: Lecture 2 oms
Page 14: Lecture 2 oms
Page 15: Lecture 2 oms
Page 16: Lecture 2 oms
Page 17: Lecture 2 oms
Page 18: Lecture 2 oms
Page 19: Lecture 2 oms

Charge Transport Theory General

Page 20: Lecture 2 oms
Page 21: Lecture 2 oms
Page 22: Lecture 2 oms
Page 23: Lecture 2 oms
Page 24: Lecture 2 oms
Page 25: Lecture 2 oms
Page 26: Lecture 2 oms

Figure 9.11. (a) Energy levels in an isolated silicon atom and (b) in a

silicon crystal of N atoms, illustrating the formation of energy bands. The

valence band contains 4N states and can accommodate all 4N valence

electrons.

Page 27: Lecture 2 oms

Figure 7.1. Schematic plot of the single particle energy spectrum in a bulk

semiconductor for both the electron and hole states on the left side of the

panel with appropriate electron (e) and hole (h) discrete quantum states

shown on the right. The upper parabolic band is the conduction band, the

lower the valence.

Page 28: Lecture 2 oms

Holes

Page 29: Lecture 2 oms
Page 30: Lecture 2 oms
Page 31: Lecture 2 oms

Figure 9.12. A valence electron jumping across the energy gap in pure

silicon resulting in the generation of a free electron and hole in the crystal:

(a) energy band model, (b) bond model.

Page 32: Lecture 2 oms

Figure 9.13. Extrinsic n-type silicon doped with P donor atoms. (a) Energy

band diagram and (b) Bond model.

Page 33: Lecture 2 oms

Figure 9.14. Extrinsic p-type silicon doped with B acceptor atoms. (a)

Energy band diagram and (b) Bond model.

Page 34: Lecture 2 oms
Page 35: Lecture 2 oms

Electronic structures of Organic Molecules (1) Core electrons. (2) s electrons, localized between two atoms. (3) n electrons, located at a particular heteroatom, usually have high orbital

energy and could be promoted easily. (4) p electrons, delocalized over an array of atoms, usually have high MO

energy and could be promoted easily.

Page 36: Lecture 2 oms

Linear Combination of Atomic Orbitals

LCAO

Page 37: Lecture 2 oms
Page 38: Lecture 2 oms

Density Functional Theory

Page 39: Lecture 2 oms

Background

• 1920s: Introduction of the Thomas-Fermi model.

• 1964: Hohenberg-Kohn paper proving existence of exact DF.

• 1965: Kohn-Sham scheme introduced.

• 1970s and early 80s: LDA. DFT becomes useful.

• 1985: Incorporation of DFT into molecular dynamics (Car-Parrinello)

(Now one of PRL’s top 10 cited papers).

• 1988: Becke and LYP functionals. DFT useful for some chemistry.

• 1998: Nobel prize awarded to Walter Kohn in chemistry for

development of DFT.

Page 40: Lecture 2 oms
Page 41: Lecture 2 oms

1 1( , ,..., , )N Ns s r r

Page 42: Lecture 2 oms

Lecture 8: Introduction to Density Functional

Theory

Marie Curie Tutorial Series: Modeling Biomolecules December 6-11, 2004

Mark Tuckerman

Dept. of Chemistry

and Courant Institute of Mathematical Science

100 Washington Square East

New York University, New York, NY 10003

Page 43: Lecture 2 oms
Page 44: Lecture 2 oms

Amorphous Semiconductors

Page 45: Lecture 2 oms
Page 46: Lecture 2 oms
Page 47: Lecture 2 oms
Page 48: Lecture 2 oms

Let’s estimate the mean free path, lmax=l. Let vmax=v.

The carrier mobility is defined as μ= eτ/m*, where τ is the carrier relaxation time. Consider for mfree carrier=m*=m. We take l=v τ . and ½mv2=3/2 kT, all of which gives l=√(3kTm/e2 ) μ or l=0.7 μ where l is in angstrom units and μ is in cm2/v sec

Page 49: Lecture 2 oms

Transport between “isolated” molecules

Page 50: Lecture 2 oms
Page 51: Lecture 2 oms
Page 52: Lecture 2 oms
Page 53: Lecture 2 oms
Page 54: Lecture 2 oms
Page 55: Lecture 2 oms
Page 56: Lecture 2 oms
Page 57: Lecture 2 oms
Page 58: Lecture 2 oms
Page 59: Lecture 2 oms
Page 60: Lecture 2 oms
Page 61: Lecture 2 oms

Excitons

Page 62: Lecture 2 oms
Page 63: Lecture 2 oms
Page 64: Lecture 2 oms
Page 65: Lecture 2 oms

A peculiarity in some One-dimensional systems:

Peierls Distortion

Page 66: Lecture 2 oms
Page 67: Lecture 2 oms
Page 68: Lecture 2 oms
Page 69: Lecture 2 oms
Page 70: Lecture 2 oms