52
LaserInduced Fluorescence (LIF) and Integrated Site Visualizations TM (ISV) Direct Sensing Technology for Identification and Delineation of Light NonAqueous Phase Liquids (LNAPL) at Hydrocarbon Release Sites 1

Laser Induced Fluorescence and ISVs

  • Upload
    wcecfoc

  • View
    367

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Laser Induced Fluorescence and ISVs

Laser‐Induced Fluorescence (LIF)and 

Integrated Site VisualizationsTM (ISV)

Direct Sensing Technologyfor

Identification and Delineation ofLight Non‐Aqueous Phase Liquids (LNAPL)

at Hydrocarbon Release Sites

1

Page 2: Laser Induced Fluorescence and ISVs

2

Today’s Presenters:

Ed CreadenDirector, Corporate MarketingWCEC / Matrix [email protected]

Jim RolleISVTM Program ManagerWCEC / Matrix [email protected]

Page 3: Laser Induced Fluorescence and ISVs

3

Basic principles of LIF technology & operationDeploymentOutputLNAPL delineationInterferences & limitationsData analysisLNAPL Conceptual Site Model (LCSM)Case studies & ISV examples

What we will discuss:

Page 4: Laser Induced Fluorescence and ISVs

Laser‐Induced Fluorescence (LIF)Developed by Dakota Technologies, Inc., Fargo, ND

UVOST®

4

TarGOST®

Both technologies employ lasers for excitation of polycyclic aromatic hydrocarbons (PAHs) present in NAPL.

This presentation focuses primarily on the UVOST® technology.

Tar‐specific Green Optical Screening Tool

Detects coal tars/creosotes containing moderate to heavy PAH 

concentrations. 

Ultra‐Violet Optical Screening Tool 

Detects fuels/oils containing low to moderate PAH concentrations. 

Page 5: Laser Induced Fluorescence and ISVs

UVOST® Features

LIF excitation of PAHs present in LNAPL

Direct‐sensing of mobile and residual LNAPL

Real‐time data, logs response vs. depth

Direct‐push delivery (CPT or push probe)

Rapid assessment (200 to 500 ft./day)

Greater cost‐effectiveness than traditional LNAPL assessment strategies

5

Page 6: Laser Induced Fluorescence and ISVs

6

Because PAHs such as naphthalene, perylene and anthracene predictably fluoresce at varying wavelengths and decay times when exposed to UV light, useful information regarding the presence and composition of LNAPL is available in the fluorescent response. 

UVOST® Technology Description

NaphthaleneC10H8

Page 7: Laser Induced Fluorescence and ISVs

UVOST® Technology Description

7

Conductivity Wires

Return FiberLaser Launch Fiber

Sapphire Window

Parabolic Mirror

Conductivity Dipole

Shock‐ProtectedOpticalCompartment(SPOC)

Shock‐resistant and water‐tight SPOC is advanced with direct‐push equipment.

UVOST® and computer provide real‐time data logging during assessment.

Page 8: Laser Induced Fluorescence and ISVs

UVOST® Deployment

8

WCEC and Matrix advance the UVOST® tooling using direct‐push technology from a variety of delivery platforms.

Page 9: Laser Induced Fluorescence and ISVs

UVOST® Deployment

9

Truck‐mounted and tracked probing units are commonly used to deploy the UVOST®.

Page 10: Laser Induced Fluorescence and ISVs

UVOST® Deployment

10

WCEC and Matrix are often required to deploy UVOST® under complex site access scenarios.

Page 11: Laser Induced Fluorescence and ISVs

UVOST® Output

11

The OST translates the fluorescence emission into a multi‐wavelength waveform.

3D illustration of diesel’s fluorescenceemission – wavelength/time matrix (WTM)

Diesel’s multi‐wavelengthwaveform

OST

Dakota Technologies

Page 12: Laser Induced Fluorescence and ISVs

UVOST® Output

12

Jet fuel / kerosene

Dakota Technologies

Gasoline

Diesels

Oils

Page 13: Laser Induced Fluorescence and ISVs

UVOST® Output

13

Real‐time logs displayresponse vs. depth

Waveform calloutson demand

Electrical conductivitysimultaneously loggedwith each UVOST® probe for lithology assessment

Representative UVOST® log

Page 14: Laser Induced Fluorescence and ISVs

Contamination Phases

1) Vapor Phase2) Adsorbed Phase3) Dissolved Phase (aqueous phase liquid)4) Non‐aqueous Phase Liquid (NAPL)

a) Mobileb) Residual

14

Hydrocarbon contamination exists in four phases in the subsurface:

Page 15: Laser Induced Fluorescence and ISVs

15

Contamination Phases

Page 16: Laser Induced Fluorescence and ISVs

16

Contamination Phases

Page 17: Laser Induced Fluorescence and ISVs

17

Contamination Phases

Page 18: Laser Induced Fluorescence and ISVs

18

Contamination Phases

Page 19: Laser Induced Fluorescence and ISVs

1) Soil Boring Investigation2) Monitoring Well Network3) Vapor Survey4) Membrane Interface Probe (MIP)

Each of these is responsive to all four phases of contamination, resulting in poor delineation of the LNAPL source body.

19

NAPL Assessment Tools

Standard LNAPL Assessment Methods:

Page 20: Laser Induced Fluorescence and ISVs

20

UVOST® Application

The UVOST® responds only to LNAPL, supporting the development of an accurate LCSM for risk assessment and remediation purposes.

Page 21: Laser Induced Fluorescence and ISVs

LNAPL Source Identification with UVOST®

21

Diagram of conceptual field application of UVOST® technology

LIF‐01 LIF‐02 LIF‐03

Page 22: Laser Induced Fluorescence and ISVs

22

LIF‐01 LIF‐02 LIF‐03

Simplified UVOST® log

Diagram of conceptual field application of UVOST® technology

Simplified UVOST® log

LNAPL Source Identification with UVOST®

Page 23: Laser Induced Fluorescence and ISVs

23

LIF‐01 LIF‐02 LIF‐03

Diagram of conceptual field application of UVOST® technology

Simplified UVOST® log

LNAPL Source Identification with UVOST®

Page 24: Laser Induced Fluorescence and ISVs

24

LIF‐01 LIF‐02 LIF‐03

Simplified UVOST® log

Diagram of conceptual field application of UVOST® technology

Simplified UVOST® log

LNAPL Source Identification with UVOST®

Page 25: Laser Induced Fluorescence and ISVs

25

Simplified UVOST® log

Diagram of conceptual field application of UVOST® technologyLNAPL Source Identification with UVOST®

Page 26: Laser Induced Fluorescence and ISVs

UVOST® assessments collect environmental measurements at the appropriate scale of the heterogeneities which control contaminant distribution, transport and fate.

26

High Resolution Data with UVOST®

Subsurface heterogeneities occur at scales that areoften too small for conventional investigationstrategies and technologies to adequatelycharacterize. 

Page 27: Laser Induced Fluorescence and ISVs

27

Data density determines how clearly you will ‘see’ the picture and how accurate your LCSM will be.

UVOST® Data Density

Page 28: Laser Induced Fluorescence and ISVs

28

Data density determines how clearly you will ‘see’ the picture and how accurate your LCSM will be.

UVOST® Data Density

Greater degrees of accuracy  in an LNAPL assessment support more effective and efficient remediation.

Page 29: Laser Induced Fluorescence and ISVs

29

Data density determines how clearly you will ‘see’ the picture and how accurate your LCSM will be.

UVOST® Data Density

Greater degrees of accuracy  in an LNAPL assessment support more effective and efficient remediation. 

But only up to a limit!We can assist our clients to develop appropriate UVOST® sampling plans for maximum cost‐effectiveness.

Page 30: Laser Induced Fluorescence and ISVs

30

UVOST® Detects:GasolineDieselJet fuel (kerosene)Motor oilHydraulic fluidsCutting fluids

UVOST® Applications & Limitations

Note:  Tar‐specific Green Optical Screening Tool (TarGOST®) is used for the detection of coal tars, creosotes, heavy crudes, tank bottoms, etc.

Page 31: Laser Induced Fluorescence and ISVs

31

UVOST® Applications & LimitationsUVOST® Does Not Detect:

PCBsChlorinated HydrocarbonsDissolved phase PAHs

Note:  Tar‐specific Green Optical Screening Tool (TarGOST®) is used for the detection of coal tars, creosotes, heavy crudes, tank bottoms, etc.

UVOST® Detects:GasolineDieselJet fuel (kerosene)Motor oilHydraulic fluidsCutting fluids

Page 32: Laser Induced Fluorescence and ISVs

32

UVOST® Applications & LimitationsUVOST® False Positives:

Organic matter

Sea shells

Calcite

Calcareous sands

Peat

Shorter lifetimes

“Odd” appearance Dakota Technologies

Page 33: Laser Induced Fluorescence and ISVs

Key Take‐Aways

LIF responds only to NAPL – Effectively differentiates NAPL from other phases of 

contamination

High data density – Accurate delineation of NAPL body

Development of robust LCSM

Cost‐effective, real‐time data

33

Page 34: Laser Induced Fluorescence and ISVs

34

UVOST® Data Analysis & LCSM Development

WCEC provides Integrated Site Visualization (ISVTM) services to deliver a 3D representation of the site conceptual model. 

Use of 3D visualization tools allows complex information to be easily evaluated and understood by both technical and non‐technical interested parties. 

Page 35: Laser Induced Fluorescence and ISVs

35

High resolution GIS imagery and traditional basemap features, such as CAD drawings, topographic maps, or aerial photographs, may be combined to represent the ground surface in three dimensions, with the photographs or maps precisely placed on the topographic surface.

UVOST® Data Analysis & LCSM Development

Page 36: Laser Induced Fluorescence and ISVs

36

LIF and electrical conductivity (EC) data greatly enhance the accuracy and usefulness of the model. 

UVOST® Data Analysis & LCSM Development

Page 37: Laser Induced Fluorescence and ISVs

37

Contaminant chemistry data are depicted along with lithology and stratigraphy data for a more complete understanding of subsurface contaminant fate and transport.

UVOST® Data Analysis & LCSM Development

Page 38: Laser Induced Fluorescence and ISVs

38

3D images of the extent and magnitude of the contaminant plume are used to determine volumetric parameters.

UVOST® Data Analysis & LCSM Development

Page 39: Laser Induced Fluorescence and ISVs

39

Deliverables include static images, digital animations, and dynamic 3D files with an interactive viewer. 

Our ISVTM deliverables prevent misconceptions that often result when using two dimensional plots to represent the three‐dimensional subsurface environment.

UVOST® Data Analysis & LCSM Development

Page 40: Laser Induced Fluorescence and ISVs

40

UVOST® ISV™ Animations

Page 41: Laser Induced Fluorescence and ISVs

41

UVOST® ISV™ Animations

Page 42: Laser Induced Fluorescence and ISVs

42

UVOST ® Investigation Case StudyLegacy petroleum release site in downtown Polson, Montana, initial investigation in early 1990s

13 facilities with releases and individual PRP ownership

Large undefined LNAPL plume, LNAPL present in various monitoring wells across the site

Complex lithology consisting of fine‐grained, varved lakebed sediments

Sensitive surface water receptor (Flathead Lake)

Various regulatory agencies including MTDEQ, City of Polson, Lake County, CSKT Tribe & USEPA

Page 43: Laser Induced Fluorescence and ISVs

43

UVOST ® Investigation Case Study

Page 44: Laser Induced Fluorescence and ISVs

44

UVOST ® Investigation Case Study

Investigation included 138 UVOST® borings completed over 10 day period

Geospatial data points recorded for each boring using sub‐decimeter GPS equipment

Daily uploads of UVOST® response and GPS data conducted using WCEC’s Real Time Data Transmission (RTDT) service

WCEC UVOST® analyst provided daily 2D LNAPL isoconcentration maps as a tool to guide the investigation

Depth of borings was correlated to high and low pool lake elevations

Page 45: Laser Induced Fluorescence and ISVs

45

UVOST ® Investigation Case Study

Page 46: Laser Induced Fluorescence and ISVs

46

UVOST ® Investigation Case Study

Page 47: Laser Induced Fluorescence and ISVs

47

UVOST ® Investigation Case Study

Page 48: Laser Induced Fluorescence and ISVs

48

UVOST ® Investigation Case Study

Page 49: Laser Induced Fluorescence and ISVs

49

UVOST ® Investigation Case Study

Page 50: Laser Induced Fluorescence and ISVs

50

UVOST ® Investigation Case Study

Page 51: Laser Induced Fluorescence and ISVs

51

UVOST ® Investigation Case Study

Investigation successfully delineated horizontal and vertical extent of LNAPL plume allowing for targeted LNAPL recovery

Completed in 10 field days with total cost of under $100,000

Previous investigations totaled over $1M and were not successful in delineating plume

Greatly advanced the CSM through collection of detailed LNAPL distribution and geophysical data (EC)

Page 52: Laser Induced Fluorescence and ISVs

52

Thank you! Questions?

UVOST® Services:Jim DzubayLIF Services [email protected]

ISVTM Services:Jim RolleISVTM Program [email protected]

www.wcec.comwww.matrixenv.com