32
1 / 10 Relaxation timescales, decay of correlattions and multipartite entanglement in a long-range interacting quantum simulator Mauritz van den Worm National Institute of Theoretical Physics Stellenbosch University QICP2

Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

Embed Size (px)

DESCRIPTION

Research talk presented at QICP2. I talk about equilibration and thermalization of closed quantum systems, the different timescales of two-point correlations functions and the evolution of different measures of entanglement for a quantum lattice system with long-range interactions.

Citation preview

Page 1: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

1 / 10

Relaxation timescales, decay of correlattions andmultipartite entanglement in a long-range interacting

quantum simulator

Mauritz van den Worm

National Institute of Theoretical Physics

Stellenbosch University

QICP2

Page 2: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Introductory words 2 / 10

Page 3: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Introductory words 2 / 10

Page 4: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Introductory words 2 / 10

Page 5: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Introductory words 2 / 10

Page 6: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Introductory words 2 / 10

Page 7: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Introductory words 2 / 10

Page 8: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Introductory words 2 / 10

Page 9: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Introductory words 2 / 10

What do we use to study this?

limt→∞

1

t

∫ t

0〈A〉 (τ)dτ = lim

t→∞

1

t

∫ t

0

⟨e−iHtAe iHt

⟩dτ

Page 10: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Introductory words 2 / 10

What do we use to study this?

limt→∞

1

t

∫ t

0〈A〉 (τ)dτ = lim

t→∞

1

t

∫ t

0

⟨e−iHtAe iHt

⟩dτ

A system is said to thermalize if

limt→∞

1

t

∫ t

0〈A〉 (τ)dτ =

1

ZTr[Ae−βH

]

Page 11: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 3 / 10

Page 12: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 4 / 10

Long-Range Ising: Time evolution of expectation values

Graphical Representation of Correlation Functions

XΣ0x\HtL

XΣ-1x Σ1

x\HtLXΣ-1

yΣ1

y\HtLXΣ-1

yΣ1

z \HtL

Α = 0.4

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

XΣiaΣ j

b\HtL

Figure: Time evolution of the normalized spin-spin correlators. The respectivegraphs were calculated for N = 102, 103 and 104. Notice the presence of thepre-thermalization plateaus of the two spin correlators.

Page 13: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 4 / 10

Long-Range Ising: Time evolution of expectation values

Ingredients

D dimensional lattice Λ

H =⊗

j∈Λ C2j

Ji ,j = |i − j |−α

Long-range Ising Hamiltonian

H = −∑

(i ,j)∈Λ×Λ

Ji ,jσzi σ

zj − B

∑i∈Λ

σzi

Graphical Representation of Correlation Functions

XΣ0x\HtL

XΣ-1x Σ1

x\HtLXΣ-1

yΣ1

y\HtLXΣ-1

yΣ1

z \HtL

Α = 0.4

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

XΣiaΣ j

b\HtL

Figure: Time evolution of the normalized spin-spin correlators. The respectivegraphs were calculated for N = 102, 103 and 104. Notice the presence of thepre-thermalization plateaus of the two spin correlators.

Page 14: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 4 / 10

Long-Range Ising: Time evolution of expectation values

Orthogonal Initial States

ρ(0) =∑

i1,··· ,i|Λ|∈Λ

∑a1,··· ,a|Λ|∈{0,x ,y}

Ra1,··· ,a|Λ|i1,··· ,i|Λ| σ

a1i1· · ·σa|Λ|i|Λ|

Graphical Representation of Correlation Functions

XΣ0x\HtL

XΣ-1x Σ1

x\HtLXΣ-1

yΣ1

y\HtLXΣ-1

yΣ1

z \HtL

Α = 0.4

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

XΣiaΣ j

b\HtL

Figure: Time evolution of the normalized spin-spin correlators. The respectivegraphs were calculated for N = 102, 103 and 104. Notice the presence of thepre-thermalization plateaus of the two spin correlators.

Page 15: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 4 / 10

Long-Range Ising: Time evolution of expectation values

〈σxi 〉(t) = 〈σxi 〉(0)∏j 6=i

cos

(2t

|i − j |α

)〈σyi σ

zj 〉(t) = 〈σxi 〉(0) sin (2tJi ,j)

∏k 6=i ,j

cos (2tJk,i )

〈σxi σxj 〉(t) = P−i ,j + P+i ,j

〈σyi σyj 〉(t) = P−i ,j − P+

i ,j

P±i ,j =1

2〈σxi σxj 〉(0)

∏k 6=i ,j

cos

[2t

(1

|i − k |α± 1

|j − k|α

)]

Graphical Representation of Correlation Functions

XΣ0x\HtL

XΣ-1x Σ1

x\HtLXΣ-1

yΣ1

y\HtLXΣ-1

yΣ1

z \HtL

Α = 0.4

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

XΣiaΣ j

b\HtL

Figure: Time evolution of the normalized spin-spin correlators. The respectivegraphs were calculated for N = 102, 103 and 104. Notice the presence of thepre-thermalization plateaus of the two spin correlators.

Page 16: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 4 / 10

Long-Range Ising: Time evolution of expectation valuesGraphical Representation of Correlation Functions

XΣ0x\HtL

XΣ-1x Σ1

x\HtLXΣ-1

yΣ1

y\HtLXΣ-1

yΣ1

z \HtL

Α = 0.4

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

XΣiaΣ j

b\HtL

Figure: Time evolution of the normalized spin-spin correlators. The respectivegraphs were calculated for N = 102, 103 and 104. Notice the presence of thepre-thermalization plateaus of the two spin correlators.

Page 17: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| What is being done experimentally? 5 / 10

Trapped Ion Experiments

Long-range Ising Hamiltonian

H = −∑i<j

Ji ,jσzi σ

zj − Bµ ·

∑i

σi

Graphical Representation of Correlation Functions

YΣix]

YΣiy

Σ jz]

YΣiy

Σ jy]

YΣix

Σ jx]

Α = 0.25

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

YΣix]

YΣiy

Σ jz]

YΣiy

Σ jy]

YΣix

Σ jx]

Α = 1.5

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure: Time evolution of the normalized spin-spin correlations. Curves of thesame color correspond to different side lengths L = 4, 8, 16 and 32 (from rightto left) of the hexagonal patches of lattices. In figure (a) α = 1/4, results aresimilar for all 0 ≤ α < ν/2. In figure (b) α = 3/2, with similar results for allα > ν/2.

Page 18: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| What is being done experimentally? 5 / 10

Trapped Ion Experiments

Long-range Ising Hamiltonian

H = −∑i<j

Ji ,jσzi σ

zj − Bµ ·

∑i

σi

Graphical Representation of Correlation Functions

YΣix]

YΣiy

Σ jz]

YΣiy

Σ jy]

YΣix

Σ jx]

Α = 0.25

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

YΣix]

YΣiy

Σ jz]

YΣiy

Σ jy]

YΣix

Σ jx]

Α = 1.5

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure: Time evolution of the normalized spin-spin correlations. Curves of thesame color correspond to different side lengths L = 4, 8, 16 and 32 (from rightto left) of the hexagonal patches of lattices. In figure (a) α = 1/4, results aresimilar for all 0 ≤ α < ν/2. In figure (b) α = 3/2, with similar results for allα > ν/2.

Page 19: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 6 / 10

Page 20: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 7 / 10

Long-Range Ising: Time evolution of expectation values

Product Initial States

|ψ(0)〉 =⊗j∈Λ

[cos

(θj2

)e iφj/2| ↑〉j + sin

(θj2e−iφj/2

)| ↓〉j

]

Page 21: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 7 / 10

Long-Range Ising: Time evolution of expectation values

Product Initial States

|ψ(0)〉 =⊗j∈Λ

[cos

(θj2

)e iφj/2| ↑〉j + sin

(θj2e−iφj/2

)| ↓〉j

]

Page 22: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 7 / 10

Long-Range Ising: Time evolution of expectation values

Product Initial States

|ψ(0)〉 =⊗j∈Λ

[cos

(θj2

)e iφj/2| ↑〉j + sin

(θj2e−iφj/2

)| ↓〉j

]

Page 23: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 7 / 10

Long-Range Ising: Time evolution of expectation values

Product Initial States

|ψ(0)〉 =⊗j∈Λ

[cos

(θj2

)e iφj/2| ↑〉j + sin

(θj2e−iφj/2

)| ↓〉j

]

Page 24: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 7 / 10

Long-Range Ising: Time evolution of expectation values

Product Initial States

|ψ(0)〉 =⊗j∈Λ

[cos

(θj2

)e iφj/2| ↑〉j + sin

(θj2e−iφj/2

)| ↓〉j

]

Page 25: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 8 / 10

α = 0.75 θ = π/2

4

Π

2

3 Π

4

Π

0.0

0.2

0.4

0.6

0.8

1.0

Θ

t

0.2

0.6

1

1.4

1.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Α

t

0.2

0.6

1

1.4

1.8

Figure: Left: von Neumann entanglement in the (θ, t)-plane. Notice differentsaturation levels for different tipping angles. Right: von Neumann entanglementin the (α, t)-plane. Notice the three distinct regions.

Page 26: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 8 / 10

S [ρi (t)] = −Tr [ρi (t) log2 ρi (t)]

α = 0.75 θ = π/2

4

Π

2

3 Π

4

Π

0.0

0.2

0.4

0.6

0.8

1.0

Θ

t

0.2

0.6

1

1.4

1.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Α

t

0.2

0.6

1

1.4

1.8

Figure: Left: von Neumann entanglement in the (θ, t)-plane. Notice differentsaturation levels for different tipping angles. Right: von Neumann entanglementin the (α, t)-plane. Notice the three distinct regions.

Page 27: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 8 / 10

α = 0.75 θ = π/2

4

Π

2

3 Π

4

Π

0.0

0.2

0.4

0.6

0.8

1.0

Θ

t

0.2

0.6

1

1.4

1.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Α

t

0.2

0.6

1

1.4

1.8

Figure: Left: von Neumann entanglement in the (θ, t)-plane. Notice differentsaturation levels for different tipping angles. Right: von Neumann entanglementin the (α, t)-plane. Notice the three distinct regions.

Page 28: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 9 / 10

α = 0.75 θ = π/2

4

Π

2

3 Π

4

Π

0.0

0.1

0.2

0.3

0.4

0.5

Θ

t

0.25

0.75

1.25

1.75

2.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

Α

t

0.5

1.5

2.5

3.5

Figure: Left: Decibell spin squeezing −10 log10 ξ(t) in the (θ, t)-plane. Right:Decibell spin Squeezing in the (α, t)-plane

Page 29: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 9 / 10

α = 0.75 θ = π/2

4

Π

2

3 Π

4

Π

0.0

0.1

0.2

0.3

0.4

0.5

Θ

t

0.25

0.75

1.25

1.75

2.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

Α

t

0.5

1.5

2.5

3.5

Figure: Left: Decibell spin squeezing −10 log10 ξ(t) in the (θ, t)-plane. Right:Decibell spin Squeezing in the (α, t)-plane

Page 30: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 9 / 10

Squeezing Parameter

ξ(t) =√N min

ψ

∆(S · n̂ψ

)∣∣〈S〉(t)∣∣ , S =

∑i∈Λ

(σxi , σ

yi , σ

zi

)

α = 0.75 θ = π/2

4

Π

2

3 Π

4

Π

0.0

0.1

0.2

0.3

0.4

0.5

Θ

t

0.25

0.75

1.25

1.75

2.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

Α

t

0.5

1.5

2.5

3.5

Figure: Left: Decibell spin squeezing −10 log10 ξ(t) in the (θ, t)-plane. Right:Decibell spin Squeezing in the (α, t)-plane

Page 31: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Exact analytic results 9 / 10

α = 0.75 θ = π/2

4

Π

2

3 Π

4

Π

0.0

0.1

0.2

0.3

0.4

0.5

Θ

t

0.25

0.75

1.25

1.75

2.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

Α

t

0.5

1.5

2.5

3.5

Figure: Left: Decibell spin squeezing −10 log10 ξ(t) in the (θ, t)-plane. Right:Decibell spin Squeezing in the (α, t)-plane

Page 32: Relaxation timescales, decay of correlations and multipartite entanglement in a long-range interacting quantum simulator

| Collaborators 10 / 10

Collaborators

Michael KastnerSupervisor

John BollingerNIST

Boulder, Colorado

Brian SawyerNIST

Boulder, Colorado

Ana Maria ReyJILA

Boulder, Colorado

Kaden HazzardJILA

Boulder, Colorado

Michael Foss-FeigJQI

Gaithersburg, Maryland