40
Ashley Jacobi, Research Scientist Integrated DNA Technologies New RNA tools for optimized CRISPR/Cas9 genome editing October 7 th , 2015 1

New RNA tools for optimized CRISPR/Cas9 genome editing

Embed Size (px)

Citation preview

Page 1: New RNA tools for optimized CRISPR/Cas9 genome editing

Ashley Jacobi, Research ScientistIntegrated DNA Technologies

New RNA tools for optimized CRISPR/Cas9 genome editing

October 7th, 2015

1

Page 2: New RNA tools for optimized CRISPR/Cas9 genome editing

Implementing CRISPR/Cas9 gene editing

2

Page 3: New RNA tools for optimized CRISPR/Cas9 genome editing

Options for the CRISPR gRNA

3

Page 4: New RNA tools for optimized CRISPR/Cas9 genome editing

Repair of double-stranded breaks—HR vs. NHEJ

4

Page 5: New RNA tools for optimized CRISPR/Cas9 genome editing

• S. pyogenes Cas9 is a large protein, 1368 aa = 4104 bp

• Plasmid containing Cas9: 7–10 kb

• Transfection of a large plasmid results in variable and low transfection efficiency, making large quantitative comparison studies difficult

Delivery of a Cas9 + sgRNA expression plasmid is difficult

5

Delivering  large  Cas9  expression  plasmid   to  cells  can  be  difficult

Page 6: New RNA tools for optimized CRISPR/Cas9 genome editing

Optimizing CRISPR gRNA using HEK293-Cas9 cell line

6

Low, constant level of Cas9 present in HEK293-Cas9– Note the extremely high levels of Cas9 present in

just a small fraction (~10%) of transfected cells using plasmid. Can this contribute to OTEs?HEK293-­‐Cas9  Cells

Western  blot—Cas9  primary  antibody  

Page 7: New RNA tools for optimized CRISPR/Cas9 genome editing

T7EI mismatch detection to assay gene disruption1. Transfect HEK-Cas9 cells with the CRISPR gRNA

– Alternatively deliver Cas9 as plasmid, mRNA or protein

2. Incubate 48 hours, then harvest genomic DNA3. PCR amplify region around CRISPR site (400–1000 base amplicons)

– Heat, cool to form heteroduplexes

4. Incubate with T7 Endonuclease I (T7EI, New England BioLabs) 5. Run on gel or Fragment Analyzer™ (Advanced Analytical) to visualize cleavage at heteroduplex mismatch sites

7

Page 8: New RNA tools for optimized CRISPR/Cas9 genome editing

IDT CRISPR gene editing and mutation detection workflow

8

• The Fragment Analyzer™ (Advanced Analytical) provides reliable quantification of T7EI heteroduplex cleavage assay with 96-channel CE– High resolution analysis of fragments 10–40,000 bp– Rapid 1 hr run – 1/10th amount of DNA required to visualize

Transfect  2-­‐part  RNA  at  30  nM or  gBlocks  fragment  at  3  nM into  Cas9  expressing  cells

Extract  gDNA after  48  hr with  

QuickExtract DNA  Solution

Heat  gDNA extract  at  65°C  for  15  min  followed  by  95°C  

for  15  min

Amplify  gDNA with  KAPA  HiFi

Polymerase  and  PCR  assay  targeting  region  of  interest

Add  NEB  buffer  2  to  PCR,  heat  to  95°C  and  slowly  cool  to  allow  heteroduplex

formation

Digest  heteroduplexes  

with  2  units  of  T7EI  at  37°C  for  1  hr

Analyze  digestion  on  Fragment  Analyzer

Electropherogramand peak table of separated sample on Fragment Analyzer

52%  T7  cleavage

Page 9: New RNA tools for optimized CRISPR/Cas9 genome editing

Options for the CRISPR gRNA

9

Page 10: New RNA tools for optimized CRISPR/Cas9 genome editing

gBlocks® Gene Fragments for CRISPR• Inexpensive gene synthesis product with rapid delivery

– High quality double-stranded DNA fragments– 125–2000 bp in length– Sequence verified

• CRISPR gBlocks® Gene Fragment = 364 bp sgRNA expression cassette – Comprised of a 265 bp U6 promoter that drives transcription of a 99 base sgRNA

www.idtdna.com/CRISPR

10

AAGGTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGNNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTT

Page 11: New RNA tools for optimized CRISPR/Cas9 genome editing

gBlocks® Gene Fragments as sgRNA (three methods)

1. Clone gBlocks Gene Fragments into an expression plasmid

2. Use gBlocks Gene Fragment as template for in vitro transcribed sgRNA (IVT sgRNA)

3. Directly transfect gBlocks Gene Fragment into cells without cloning

11

www.idtdna.com/CRISPR

http://www.addgene.org/static/cms/files/hCRISPR_gRNA_Synthesis.pdf

gRNAbackbone

Current Protocols in Molecular Biology (2014), 31.1.1-31.1.17.

>14,000  gBlocks® Gene  Fragments  manufactured   for  CRISPR

Page 12: New RNA tools for optimized CRISPR/Cas9 genome editing

CRISPR gBlocks® Gene Fragment in HPRT gene (HEK293 Cas9 cells)

12

38094S

38095S

38115S

38129S

38231S

38239S

38256S

38338S

38371S

38448S

38478S

38509S

38510S

38574S

38626S

+

23% 46% 21% 0% 31% 27% 3% 47% 0% 41% 14% 39% 4% 36%43%  

2%  Agarose  gel

Fragment  Analyzer™

Note: sequence analysis shows 30% cleavage in T7EI assay = 60–70% total editing

+

Page 13: New RNA tools for optimized CRISPR/Cas9 genome editing

Validation of T7EI assay: % total editing compared to Sanger sequencing

Sanger sequence analysis shows 30% cleavage in the T7EI assay = 60–70% actual change at DNA level (T7EI misses small changes like single base indels)

13

• Amplicons resulting in varying editing efficiencies via T7EI were cloned and sequenced.

T7EI  cleavage  (%)

Page 14: New RNA tools for optimized CRISPR/Cas9 genome editing

CRISPR gBlocks® Gene Fragments sgRNA perform well across many sites(3 genes; 301 sites)

14

0102030405060708090100

%  Cleavage  via  2U

 T7EI  

167  EMX1  Exon  3  (64%  GC)

91%*

0102030405060708090100

%  Cleavage  via  2U

 T7E1I  

92  STAT3  Exon  5/6  (47%  GC)

76%*

0102030405060708090100

%  Cleavage  via  2U

 T7EI  

42  HPRT  Exon  7  (36%  GC)

81%*

sgRNAs expressed from gBlocks Gene Fragments work well without the need to clone into plasmids

Directly transfect into HEK-Cas9 cells at 3 nMEvery PAM site in 3 exons

* Percentage of sgRNA designs with >20% editing efficiency by T7EI assay

+

Page 15: New RNA tools for optimized CRISPR/Cas9 genome editing

Options for the CRISPR gRNA

15

Page 16: New RNA tools for optimized CRISPR/Cas9 genome editing

Options for the CRISPR gRNA

16

UUAUAUCCAACACUUCGUGGUUUUAGA-­‐-­‐GCUAG|||||||      ||||  A|||||||      ||||  A

C-­‐GGAAUAAAAUUGAACGAUAU|  ||A|  ||GUCCGUUAUCAACUUG

||||  A||||  A

AGCCACGGUGAAAG  ||||||UCGGUGCUUU

sgRNA: 99–123 bases (99mer shown)

20 base “protospacer” guide, target specific

• Near the length limit for chemical manufacturing• Expensive to chemically make long sgRNAs for many sitesThis form is used in our gBlocks® Gene Fragment sgRNAexpression cassette

UUAUAUCCAACACUUCGUGGUUUUAGA-­‐-­‐GCUAUGCUGUUUUG|||||||      ||||||||||||||

C-­‐GGAAUAAAAUUGAACGAUACGACAAAACUUACCAAGGUUGU|  ||A|  ||GUCCGUUAUCAACUUG

||||  A||||  A

AGCCACGGUGAAAG  ||||||UCGGUGCUUUUUUU

crRNA: 42 bases (target specific)tracrRNA: 89 bases (universal)

• 42mer target specific (20 base target, 22 base constant)• 89mer universal tracrRNA—can be made in bulk, making

them more affordableCan these be optimized and shortened to improve function and lower cost?

Page 17: New RNA tools for optimized CRISPR/Cas9 genome editing

Optimized  length  of  crRNA  and  tracrRNA

crRNA: 42 bases (20+22)tracrRNA: 89 bases (universal)

UUAUAUCCAACACUUCGUGGUUUUAGA-­‐-­‐GCUAUGCUGUUUUG|||||||      ||||||||||||||

C-­‐GGAAUAAAAUUGAACGAUACGACAAAACUUACCAAGGUUGU|  ||A|  ||GUCCGUUAUCAACUUG

||||  A||||  A

AGCCACGGUGAAAG  ||||||UCGGUGCUUUUUUU

Native sequence

Shorter

Shorter…

Short

Page 18: New RNA tools for optimized CRISPR/Cas9 genome editing

Both the crRNA and the tracrRNA can be truncated

18

1. Short/Short

2. Long/Short

3. Short/Long

4. Long/Long Worse

Worse when too short

Better

Page 19: New RNA tools for optimized CRISPR/Cas9 genome editing

19

0

10

20

30

40

50

60

70

80

90

100

89  nt  tracrRNA 74  nt  tracrRNA 70  nt  tracrRNA 67  nt  tracrRNA 65  nt  tracrRNA 63  nt  tracrRNA

T7EI  cleavage  (%

)

42-­‐nt  crRNA39-­‐nt  crRNA36-­‐nt  crRNA34-­‐nt  crRNA

Length optimization of crRNA & tracrRNAHPRT 38285 gRNA (HEK293 Cas9 Cells)

Optimal  length  for  crRNA  is  36  nt;  optimal  tracrRNA  is  67  nt

+

Page 20: New RNA tools for optimized CRISPR/Cas9 genome editing

0

10

20

30

40

50

60

70

80

90

100

HPRT  38094  S

HPRT  38231  S

HPRT  38371  S

HPRT  38509  S

HPRT  38574  S

HPRT  38087  AS

HPRT  38133  AS

HPRT  38285  AS

HPRT  38287  AS

HPRT  38358  AS

HPRT  38636  AS  

HPRT  38673  AS  

T7EI  cleavage  (%

)

CRISPR  gRNA  Comparison—12  gRNAs  Targeting  HPRT(HEK293-­‐Cas9  Cells)

2-­‐part  RNA  (36/67)Native  RNA  (42/89)In  vitro   transcribed  sgRNAsgRNA  Expression  Plasmid  (2.7  kb)gBlocks  Gene  Fragments  sgRNA

Optimized 2-part CRISPR RNAs are superior to other gRNAs

20

HEK-­‐Cas9  cells

2-­‐part  RNA  (30  nM)IVT  RNA  (30  nM)Plasmid  (100  ng)

gBlocks  Fragment  (3  nM)

+ or or or

Page 21: New RNA tools for optimized CRISPR/Cas9 genome editing

Highly purified oligos are necessary for longer tracrRNAs

21

HEK-­‐Cas9  cells

2-­‐part  RNA,  30  nM

Desalt  crRNA

Desalt  vs.  HPLC  tracrRNA

1. Shortened   crRNA:tracrRNA performs  better   than  native  form2. 67mer  tracrRNA  functions  well  as  desalted,   shows  slight  improvement  as  HPLC3. Native  89mer  tracrRNA  requires  highly  purified  synthesis

0

10

20

30

40

50

60

70

80

HPRT  38094  S

HPRT  38231  S

HPRT  38371  S

HPRT  38509  S

HPRT  38574  S

HPRT  38087  AS

HPRT  38133  AS

HPRT  38285  AS

HPRT  38287  AS

HPRT  38358  AS

HPRT  38636  AS

HPRT  38673  AS

T7EI  cleavage    (%)

HPLC  vs.  Desalted  RNA  Oligos  – HPRT  12  sites(HEK293  Cas9  cells)

short  crRNA  (36nt)  :  short  tracrRNA  desalt  (67nt)

short  crRNA  (36nt)  :  short  tracrRNA  HPLC  (67nt)

long  crRNA  (42nt)  :  long  tracrRNA  desalt  (89nt)

long  crRNA  (42nt)  :  long  tracrRNA  HPLC  (89nt)

+

Page 22: New RNA tools for optimized CRISPR/Cas9 genome editing

2-part RNA oligos will be available from IDT this month!• crRNA

– 36 nt custom desalted RNA oligo– Ability to order in 96-well plate format– 2 or 10 nmol

• tracrRNA– 67 nt HPLC purified RNA oligo– Modified for nuclease stability– 5, 20, or 100 nmol

22

Page 23: New RNA tools for optimized CRISPR/Cas9 genome editing

Be sure to check QC data on long synthetic RNAs

23

IDT  tracrRNA Vendor  “X”  tracrRNA

ESI-­‐MS  

Page 24: New RNA tools for optimized CRISPR/Cas9 genome editing

2-part RNA system functions well across many sites

24All PAM sites in 6 exons, 553 sites (HEK293 Cas9 Cells)

* **

* * *

* Percentage of sgRNA designs with >20% editing efficiency by T7EI assay+

Page 25: New RNA tools for optimized CRISPR/Cas9 genome editing

Summary of 2-part RNA functional performance in HEK-Cas9 cells

553 guide sites in 6 exons from 4 human genes

25

Target amplicon Number of sites % >15% T7 cleavage % >20% T7 cleavage

HPRT exon 7 (36% GC) 42 40/42 = 95% 40/42 = 95%

HPRT exon 1 (62% GC) 164 135/164 = 82% 123/164 = 75%

EMX1 exon 3 (64% GC) 167 151/167 = 90% 143/167 = 86%

EMX1 exon 5/6 (40% GC) 59 56/59 = 95% 53/59 = 90%

STAT3 exon 5/6 (47% GC) 92 86/92 = 93% 86/92 = 93%

DICER exon 8 (38% GC) 29 28/29 = 97% 28/29 = 97%

Total 553 496/553 = 90% 473/553 = 86%

+

Page 26: New RNA tools for optimized CRISPR/Cas9 genome editing

Comparison of gBlocks® Gene Fragments sgRNAs vs. 2-part RNA

26+ or

**

**

**

Page 27: New RNA tools for optimized CRISPR/Cas9 genome editing

CRISPR on-target mutation profiles for varying RNA Triggers

27

• Sanger sequencing of amplicons from one target site in HPRT as varying RNA triggers

Page 28: New RNA tools for optimized CRISPR/Cas9 genome editing

Although use of shorter 17mer guides has been reported to reduce off-target effects, 17mer guides can result in far worse on-target results.

Other design features to consider — shorter protospacer?

28

0102030405060708090100

HPRT  38094  S  

HPRT  38231  S  

HPRT  38371  S

HPRT  38509  S  

HPRT  38574  S  

HPRT  38087  AS  

HPRT  38133  AS

HPRT  38285  AS  

HPRT  38287  AS  

HPRT  38358  AS  

HPRT  38636  AS  

HPRT  38673  AS  

T7EI  cleavage  (%

)

Guide  RNA  length  study—20  vs.  19  vs.  18  vs.  17  nt(HEK293  Cas9  Cells)

20  nt 19  nt 18  nt 17  nt

+

Page 29: New RNA tools for optimized CRISPR/Cas9 genome editing

• Transfection of in vitro transcribed sgRNAs sometimes resulted in large scale cell death.

Comparison of in vitro transcribed sgRNAs to 2-part RNAs

29

MEGAshortscript T7                                  IVT  Kit  (Ambion)

HiScribe T7  High  Yield  IVT  Kit  (NEB)

Page 30: New RNA tools for optimized CRISPR/Cas9 genome editing

Activity of 2-part RNAs vs. in vitro transcribed sgRNAs

30

0

10

20

30

40

50

60

70

80

90

100

HPRT  38094  S  

HPRT  38231  S  

HPRT  38371  S  

HPRT  38509  S  

HPRT  38574  S  

HPRT  38087  AS

HPRT  38133  AS

HPRT  38285  AS

HPRT  38287  AS

HPRT  38358  AS

HPRT  38636  AS

HPRT  38673  AS

T7EI  cleavage  (%)

2-­‐part  RNA  vs.  IVT  sgRNA—HPRT  12  sites(HEK293  Cas9  Cells)  

2  part  RNA  

IVT  sgRNA-­‐

+ or

Page 31: New RNA tools for optimized CRISPR/Cas9 genome editing

In vitro transcribed sgRNAs trigger immune response, 2-part RNA oligos do not (HEK-Cas9 cells)

31

• IFITM1, RIGI, and OAS2 had similarly high induction when treated with in vitro transcribed sgRNA (triphosphate removed)

• No inductions were detected when treated with 2-part RNA oligos

+ or

Page 32: New RNA tools for optimized CRISPR/Cas9 genome editing

• Reverse transfection into 96-well plate• 100 ng plasmid, 0.3 µL TransIT X2• Images taken 48 hr after transfection

Back to the Cas9 delivery problem…

32

Page 33: New RNA tools for optimized CRISPR/Cas9 genome editing

IDT Cas9 Expression Plasmid—minimal vector

• Minimal vector (7.3 kb)– Origin of replication– Ampicillin resistance– No selection marker

• Deliver Cas9 expression plasmid, followed by delivery of 2-part RNA

• Improvements in editing, other plasmid associated problems remain

33

Page 34: New RNA tools for optimized CRISPR/Cas9 genome editing

• Simple, fast, and robust delivery– Complex gRNA & Cas9 protein– Deliver directly to cells using lipofection or

electroporation

• Cas9 RNP = preferred method– Protection of RNA—reduced risk of degradation– Higher editing compared to plasmid delivery– No DNA present—no integration events– Tight control of Cas9 (on/off, nothing present in the cell

that can make more)– Reduced risk of mosaicism in animal embryo studies

34

Delivery of CRISPR gRNA + Cas9 protein as ribonucleoprotein complex (RNP)

+

Page 35: New RNA tools for optimized CRISPR/Cas9 genome editing

2 part gRNA delivered into HEK-Cas9 cells and RNP delivered into normal HEK cells result in identical editing efficiency

35

0

10

20

30

40

50

60

70

80

90

100

HPRT  38094  S

HPRT  38231  S

HPRT  38371  S

HPRT  38509  S

HPRT  38574  S

HPRT  38087  AS

HPRT  38133  AS

HPRT  38285  AS

HPRT  38287  AS

HPRT  38358  AS

HPRT  38636  AS

HPRT  38673  AS

T7EI  cleavage  (%

)

HPRT  12  Sites  -­‐ 2  part  RNA  (30  nM)  into  HEK293-­‐Cas9  Cells  – 0.75  µL  RNAiMAX2  part  RNA  +  Cas9  protein  into  HEK293  Cells

10  nM gRNA,  10  nM Cas9  protein  –1.2  µL  RNAiMAX

HEK293-­‐Cas9  Cells HEK293  cells  +  Ribonucleoprotein  Complex

+or

Page 36: New RNA tools for optimized CRISPR/Cas9 genome editing

2 part + Cas9 protein RNP Delivery is efficient in many cell lines

36

0

10

20

30

40

50

60

70

80

90

100

Mm  F9  gRNA-­‐1

Mm  F9  gRNA-­‐2

Mm  F9  gRNA-­‐3

Mm  F9  gRNA-­‐4

Mm  F9  gRNA-­‐5

Mm  F9  gRNA-­‐6

Mm  F9  gRNA-­‐7

Mm  F9  gRNA-­‐8

Mm  F9  gRNA-­‐9

Mm  F9  gRNA-­‐10

T7EI  cleavage  (%

)

Mm  Factor  IX  gRNA  Screen  – AML12  CellsCas9  RNP—10nM  gRNA,  10nM  Cas9  protein,  1.25µL  RNAiMAX

9/10  sites  high  %  gene  editing

+

Page 37: New RNA tools for optimized CRISPR/Cas9 genome editing

Conclusions

1. Synthetic RNA oligos mimicking the natural 2-part CRISPR system (crRNA:tracrRNA complex) function well in mammalian cells, both when Cas9 is expressed in the target cell and when pre-complexed with Cas9 protein as a ribonucleoprotein.

2. “Optimized” shortened crRNA:tracrRNA complex shows improved editing activity.

3. In vitro transcribed sgRNAs have a risk for immune activation.

4. The 2-part system & gBlocks® Gene Fragments both give a high positive hit rate in gene walks. This suggests that site selection algorithms may not be needed for many applications, as long as multiple sites are tested.

37

Page 38: New RNA tools for optimized CRISPR/Cas9 genome editing

Coming soon: New CRISPR products from IDT!

38

CRISPR product type

CRISPR crRNA 2 and 10 nmol

CRISPR crRNA plates 2 nmol

CRISPR tracrRNA 5, 20, and 100 nmol

Control kits Human, mouse, and rat

CRISPR crRNA HPRT positive control Human, mouse, and rat

CRISPR crRNA negative controls 3 sequence options

HPRT PCR primer mix Human, mouse, and rat

Cas9 expression plasmid

Page 39: New RNA tools for optimized CRISPR/Cas9 genome editing

“Best tech support ever,

@idtdna!”

Questions?

TALK TO A PERSON.Lauren SakowskiOur experts are available for consultation.

“The people at @idtdna are

awesome. A+ for customer service.”

Nikolai Braun

Contact us by web chat, email, or phone.Find local contact details at: www.idtdna.com

Or email: [email protected]

Page 40: New RNA tools for optimized CRISPR/Cas9 genome editing

This image cannot currently be displayed.

THANK YOU!We will email you the webinar recording and slides next week.