23
Memristive behavior at the nanoscale Anton Vladyka MMM Talk 17.11.2014

Memristive behavior in nanoscale

Embed Size (px)

Citation preview

Memristive behavior at the nanoscale

Anton VladykaMMM Talk 17.11.2014

Outline

2

• What is memristor?

• Does the physical memristor exist?

• Memristor and neuron

• Outlook

What is a memristance & a memristor

3Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

sA

sV

QM

][

][][

dV

dQC

dI

dL

dI

dVR

dQ

dM

dttV )( dttIQ )(

V I

Memristance is a function of charge, but not stores any charge => historic behavior !

What is memristor

4Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

dttUdqqM

qM

tU

dt

dqR

UI

)()(

)(

)(

m

Mt

m

U

m

Mtq

tUtU

mqMqM

000

0

0

)cos1(2

)(

sin)(

)(

Math of memristor

Classical (von Neumann) computing paradigm Memcomputing paradigm

5Traversa, F. L. & Di Ventra, M. Universal Memcomputing Machines. arXiv 1–11 (2014).

Brain-inspired:• Information-storing and

computing units are physically the same

• Massively parallel• Self-healing mechanism

Computing

61. Pershin, Y. V. & Di Ventra, M. Solving mazes with memristors: A massively parallel approach. Phys. Rev. E 84, 046703 (2011)

Memcomputing paradigm

Simulation of maze solution using memprocessor

71. Pershin, Y. V. & Di Ventra, M. Solving mazes with memristors: A massively parallel approach. Phys. Rev. E 84, 046703 (2011)

Memcomputing paradigm

Maze Memristor processor

Memristive systems

8Chua, L. O. & Kang, S. M. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976).Di Ventra, M., Pershin, Y. V, Chua, L. O Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors. Proc. IEEE 97, 1717–1724 (2009).

),,(

)(),,()(

tuxfdt

dxtutuxgty

RgIu

Vy

GgVu

Iy

memristance

memductance

CgVu

Qy

memcapacitance

LgIu

y

meminductance

Generalization of memristor ideax(t)

u(t) y(t)

g(x,u,t)

Memristive systems

9Chua, L. O. & Kang, S. M. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976).Di Ventra, M., Pershin, Y. V, Chua, L. O Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors. Proc. IEEE 97, 1717–1724 (2009).

1. Thermistor

2. Hodgkin-Huxley model of

action potential propagation

in neurons

3. Discharge tubes

10Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

2-terminal !

Does a physical memristor exist?

Does a physical memristor exist?

111. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–3 (2008). 2. Stewart, D. R. et al. Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices. Nano Lett. 4, 133–136 (2004).

Anionic transport in oxides (MgO, TiOx, HfOx …), perovskites (SrTiO3 …) AlN, ZnTe etc.

known since 1960s

Does a physical memristor exist?

12Guo, X., et al. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl. Phys. Lett. 91, 133513 (2007).

Cationic transport:

filament creation possible

Does a physical memristor exist?

13Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

Cationic transport:

filament creation possible

14Geresdi, A., Csontos, M., Gubicza, A., Halbritter, A. & Mihály, G. A fast operation of nanometer-scale metallic memristors: highly transparent conductance channels in Ag2S devices. Nanoscale 6, 2613–7 (2014).

Does a physical memristor exist?

Memristive behavior in thin Ag2S layer

Goal:

Switching behavior at molecular level

15Lörtscher, E., Ciszek, J. W., Tour, J. & Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2, 973–7 (2006).

Hysteretic behavior in MCBJ

Switching behavior at molecular level

16A. Vladyka, J. Brunner et al., in prep.

benzenediisocyanide

-Perfect reproducibility (>95%)-Double plateau formation at RT

Switching behavior at molecular level

17J. Liao, S. Blok, S.J. van der Molen, S. Diefenbach, A. W. Holleitner, C. Schönenberger, A. Vladyka, and M. Calame. 2014. “Ordered Nanoparticle Arrays Interconnected by Molecular Linkers: Electronic and Optoelectronic Properties.” Chem. Soc. Rev (November 4, 2014).

upscaling of individual molecular junctions to molecular junction networks optical and chemical switching shown before; electrical switching required

Dive into biology

18

Dive into biology

Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–5 (2011). 19

Short-term plasticity (STP) — a phenomenon in which synaptic efficacy changes over time in a way that reflects the history of presynaptic activity.

),,(

)(),,()(

tuxfdt

dxtutuxgty

Dive into biology

1. Snider, G. S. Spike-timing-dependent learning in memristive nanodevices. 2008 IEEE Int. Symp. Nanoscale Archit. 85–92 (IEEE, 2008). 2. Alibart, F. et al. A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing. Adv. Funct. Mater. 22, 609–616 (2012). 20

Spike-timing dependent plasticity (STDP) is widely believed today to be one of the fundamental mechanisms of the unsupervised learning in biological neural networks. STDP in biological systems is a refiement of Hebb’s learning rule.

fIOUT ~

Alibart, F. et al. An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse. Adv. Funct. Mater. 20, 330–337 (2010). 21

Nanoparticle organic memory FET

fIOUT ~

Outlook

Merolla, P. a. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science (80). 345, 668–673 (2014). 22

Resistive switching memory (RRAM)

Thank you