24
A synthesis of modeling and observa4onal data for an integrated assessment of the catchmentscale energy and water cycle Mauro Sulis Meteorological Ins4tute, University of Bonn Workshop on Coupled Hydrological Modeling Padova, September 2324 2015

Mauro Sulis

Embed Size (px)

Citation preview

A  synthesis  of  modeling  and  observa4onal  data  for  an  integrated  assessment  of  the  catchment-­‐scale  

energy  and  water  cycle        Mauro  Sulis    

Meteorological  Ins4tute,  University  of  Bonn  

Workshop  on  Coupled  Hydrological  Modeling  Padova,  September  23-­‐24  2015  

 Collaborators  

Prabhakar  Shrestha  (MIUB)  Sandra  Steinke  (Uni-­‐Köln)  Susanne  Crewell  (Uni-­‐Köln)  Clemens  Simmer  (MIUB)  Stefan  Kollet  (IBG3)  

 Introduc4on  

The   hydrological   and   meteorological   community   have   recently  converged  toward  a  new  integrated  simula5on  paradigm.  

Holis5c  and  physically-­‐based  view  of  the  energy,  water,  and  ma=er  cycle  across  a  range  of  spa5al  and  temporal  scales.    

New  opportuni5es  and  grand  challenges:  

Integrated  diagnosis  of  the  catchment-­‐scale  energy  and  water  cycle  using  fully-­‐coupled  simula5ons  and  observa5ons.  

Mo#va#ons  of  the  work:  

•  Powerful  tools  to  test  scien5fic  hypothesis.  •  Integrated  assessment  of   the  water   cycle   for   long-­‐term  climate  

projec5ons  and  short-­‐  and  medium-­‐term  weather  forecasts.  •  Improved   monitoring   networks   (e.g.,   mul5ple   co-­‐located  

measurements)  that  cover  the  SVA  con5nuum.  

 Outline  

•  Study  area  •  Observa4onal  dataset  •  TerrSysMP  •  Model  setup  

•  Results  

•  Conclusions  

 Study  area  

North-­‐Rhine  Westphalia  (NRW)  domain  

Land  use  classes:  

Topography:  

Al4tude  range:  15  –  700  m    

•  Cropland  (~34  %)  •  Evergreen  forest  (~14  %)    •  Deciduous  forest  (~17%)  •  Grassland  (~25  %)  

   

•  Study  area  •  Observa4onal  dataset  •  TerrSysMP  •  Model  setup  

•  Results  

•  Conclusions  

 Observa4onal  dataset  –  descrip4on    

1HD(CP)2  Observa4onal  Prototype  Experiment  (HOPE);2TERrestrial  ENvironmental  Observatories  (TERENO)  3Jülich  ObservatorY  for  Cloud  Evolu4on  (JOYCE);4Transregional  Collabora4ve  Research  Centre  –  32  (TR32)  

Data  sources:   TERENO2,  JOYCE3,  Er`  Verband,  and  TR324    

Time  period:   April  –  May  2013   HOPE1  campaign  

Variables:  

States,  fluxes,  and  diagnos5cs  across   the  subsurface,   land  surface,  and  atmosphere  compartments  of  the  terrestrial  system.  

•  Radia4on  balance  composites  (radiometers)  

•  Energy  fluxes  (eddy  covariance  measurements)  •  Soil  moisture  (cosmic-­‐ray  probes)  

•  Precipita4on  (X-­‐band  composites)  

•  Boundary  layer  height  •  Water  table  depth  

•  Humidity  and  temperature  profiles  (mul4ple  meas.)  

 Observa4onal  dataset  –  temporal  distribu4on    

Average  data  coverage:  70%  

56%  

64%  70%  

67%  

67%  

66%  

67%  

86%  

76%  

76%  

Latent  heat  

Sensible  heat  

2m  humidty  

Incoming  longwave  

Emiged  longwave  

Incoming  shortwave  

Reflected  shortwave  

2m  temperature  

10m  u-­‐wind  

10m  v-­‐wind  

 Observa4onal  dataset  –  spa4al  distribu4on  

     

•  Study  area  •  Observa4onal  dataset  •  TerrSysMP  •  Model  setup  

•  Results  

•  Conclusions  

 TerrSysMP  

COSMO  Convec4on  permihng  configura4on  (COSMO-­‐DE)  (Baldauf  et  al.  2011).  

CLM  Land  surface  scheme  (Oleson  et  al.  2008).  

ParFlow  Integrated   surface-­‐subsurface   flow   model   with   terrain  following  coordinates  (Kollet  and  Maxwell,  2006;  Maxwell,  2012).  

OASIS3  –  OASIS-­‐MCT  External   coupler   with   mul4ple   executable   approach  (Valcke  2013).  

Model  developments,  improvements,  and  applicaLons:  

Shrestha  et  al.,  2014  MWR;  Gasper  et  al.,  2014  GMD;  Sulis  et  al.,  2015  JHM;  Rahman  et  al.,  2015  AWR    

Shrestha  et  al.,  2014  MWR  

     

•  Study  area  •  Observa4onal  dataset  •  TerrSysMP  •  Model  setup  

•  Results  

•  Conclusions  

 Model  setup  

SpaLal  resoluLon:  •  COSMO:  ΔX  =  ΔY  =  1000  m      •  ParFlow-­‐CLM:  ΔX  =  ΔY  =  500m    

Temporal  resoluLon:  •  COSMO:  Δt  =  10  sec      •  ParFlow-­‐CLM:  Δt  =  900  sec    

Coupling  frequencies:  •  COSMO-­‐CLM:  CPL1  =  900  sec      •  CLM-­‐ParFlow:  CPL2  =  900  sec    

Boundary  condiLons:  •  COSMO:  Hourly  reanalysis  COSMO-­‐DE  forcing      •  ParFlow:  No-­‐flux  condi4ons    

     

•  Study  area  •  Observa4onal  dataset  •  TerrSysMP  •  Model  setup  

•  Results  

•  Conclusions  

 Results  –  Radia4on  balance  

*bias    =  (Xsim  —    Xobs)  /  Xobs  

Systema4c  overes4ma4on  of  the  net  shortwave  radia4on  by  TerrSysMP.      Beger  match  of  the  net  longwave,with  the  excep4on  of  Wuestbach.    

 Results  –  Radia4on  balance  

Analysis  of  the  shortwave  radia5on  composites:  

screening  for  “clear-­‐sky”  days    

Overes4ma4on  of  incoming  shortwave:  cloudiness  effect.        Underes4ma4on  of  reflected  shortwave:  albedo  parameterizaLon.        

 Results  –  Radia4on  balance  

Analysis  of  the  longwave  radia5on  composites:  

screening  for  “clear-­‐sky”  days    

Underes4ma4on  of  incoming  longwave:  liquid  water  path.        Good  agreement  in  the  emiged  longwave:  land  surface  temperature.        

 Results  –  Atmospheric  states    

Analysis  of  the  integrated  water  vapor  (IWV):  

Slight   underes4ma4on   of   the   simulated   IWV,   especially   with   respect   to  MWR,  and   late   in   the   a`ernoon.   TerrSysMP   response   is   consistent   with   COSMO-­‐DE  lateral  BCs.        

 Results  –  Energy  fluxes  

TerrSysMP  overesLmates  H,  larger  Bowen  ra4os  for  most  of  the  sta4ons.      

 Results  –  Land  surface  states  

Soil  moisture  dynamics  :  

Soil  porosity  

Underes5ma5on  of  precipita5on  

 Results  –  Land  surface  states  

Soil  moisture  dynamics  :  

     

•  Study  area  •  Observa4onal  dataset  •  TerrSysMP  •  Model  setup  

•  Results  

•  Conclusions  

 Conclusions  

•  Need  of  an  accurate  assessment  of  the  radia4on  balance.    •  Dras4c  influence  of  local  features  in  the  soil  moisture  

dynamics  and  par44oning  of  land  surface  energy  fluxes.  

•  Soil  moisture  dynamics  generally  well  reproduced.  

•  Es4mate  the  integrated  water  balance.  

•  Perform  ensemble  simula4ons  (e.g.,  COSMO-­‐DE-­‐EPS).    

•  Extend  the  simula4on  to  longer  4me  periods.  

Preliminary  results:  

Next  steps:  

•  Coherence  in  observa4ons  and  modeling  results.  

 Acknowledgments  

Alexander  Graf  and  Marius  Schmidt  (IBG3-­‐FZJ)  Roland  Baatz  and  Heye  Bogena  (IBG3-­‐FZJ)  Malte  Diederich  (MIUB)  Stefan  Simon  (Er`  Verband)  Jan  Schween  (Uni-­‐Köln)  Sidney  Marschollek  (MIUB)