29
Maritime Systems Overview Paco Santana

Maritime Robotics

Embed Size (px)

DESCRIPTION

Paco Santana of iRobot explains the current state of art for maritime robotics and the way ahead. The brief can be found herehttp://higherlogicdownload.s3.amazonaws.com/AUVSI/656942e4-4448-41c3-877d-0c5f3ea40e63/UploadedImages/presentations/Apr282011/IRobot.pdf

Citation preview

Page 1: Maritime Robotics

Maritime SystemsOverview Paco Santana

Page 2: Maritime Robotics

iRobot Proprietary

+NEKTON RESEARCH, LLC

•Innovative•Talented Engineers•Connected

From the Lab into the World

Producibility•

Experience Delivering Globally

Page 3: Maritime Robotics

iRobot Proprietary

Maritime Robots

In the Water:•

Seaglider

In Development:•

Ranger•

Transphibian•

Reacquire, Identify, Localize, Swimmer (RILS)•

Next Generation Torpedo Counter Measures

In Concept:•

Air Deployable AUV Platform for Sensors (ADAPS)

Page 4: Maritime Robotics

iRobot Proprietary

Seaglider

Highlights:•

15,000+ days at sea•

70% at 1000m depths•

NAVO uses 15 Seagliders•

Exceeds 10 months at sea•

5500km Range

Page 5: Maritime Robotics

iRobot Proprietary

SG144 – Ocean Station Papa Mission*6/14/2009 – 4/2/2010

Dives: 878Duration at Sea: 9.6 monthsVertical Distance through Water: 1734 kmHorizontal Distance over Ground: 5076 kmHorizontal Distance through Water: 6798mVelocities through Water:

Max Horizontal: 39.9 cm/sAverage Horizontal: 21.6 

cm/sMax Vertical: 9.3 cm/s

Average Vertical: 6.25 cm/sTotal Battery Remaining after Mission: 13.6

%

*Data includes a 1300km transit back to coastal pickup location.

SG144 – Entire Ocean Station Papa Mission

Including a 1300km transect back to coastal pickup location

World Record UUV Endurance

Page 6: Maritime Robotics

iRobot Proprietary

SeagliderSpecifications:•

Body: 1.8m long, 30cm maximum diameter

Wing span: 1m•

Antenna mast length: 1m•

Weight: 52kg (dry)•

Power: Lithium primaries, 24V and 10V packs, 17μJ

Speed: 25cm/s (1/2kt)•

Glide angle: 16-45°Guidance and Control:•

Dead reckoning using 3-axis digital compass

Kalman filter prediction•

Acoustic altimetry system•

Bathymetry map system

Page 7: Maritime Robotics

iRobot Proprietary

SeagliderSensors:•

Conductivity, Temperature & Depth

Dissolved Oxygen•

Backscatter/Flourometer•

Photosynthetically Active Radiation (PAR)

Expanding Capabilities:•

Acoustic Doppler Current Profiler•

Acoustic Recorders•

CO22

Hydrocarbon

Page 8: Maritime Robotics

iRobot Proprietary

Seaglider: Shallow to Deep

Page 9: Maritime Robotics

iRobot Proprietary

Seaglider

Applications:•

Physical, chemical, and biological oceanography

Tactical oceanography and ASW•

Long-term, long-range maritime reconnaissance

Communication gateway•

Navigation aid•

Weather studies•

Water quality•

Environmental evaluations and monitoring

Page 10: Maritime Robotics

iRobot Proprietary

Ranger

Low logistics•

High functioning•

Compact size

Page 11: Maritime Robotics

iRobot Proprietary

Ranger: Modular Architecture

Ranger  General Purpose UUV

•Standard Ranger is “A”

sized, 4.8”

diameter

•Typically less than 40 lbs

Propulsion & Rear Bulkhead

Main PayloadMid Bulkhead Nose & Fwd Bulkhead

BatteriesCompassMain Proc (COM Express)GigE Network SwitchMotor CntrllerFin CntrllerLeak DetectorDepth Sensor

AltimeterPwr SwitchGigE Ethernet PortVisual IndicatorGPS MastWifi Mast

Wifi CardGPS ModulePayload Mother Brd w/ ProcExtended run batteriesMission SensorsGigE Network Swtich

Mission Sensors (FL SONAR, CTD, Homer, etc )

MotorsCntrl Surface MechanicsPropeller

Will vary with mission/customer. Standard backbone

Will vary with mission/customer

Standard Standard

Page 12: Maritime Robotics

iRobot Proprietary

Research Ranger

Propulsion ModuleMain Section Payload Module

Nose & Fwd Bulkhead

StandardBluetoothBattery *IMUMain Proc Motor CntrllerFin CntrllerLeak Detector

StandardDepth SensorPwr SwitchWatertight Ethernet PortVisual Indicator

StandardMotorsCntrl Surface MechanicsX-fin

Recon Ranger

Scan Ranger

Sensor ConfigGPSRF CommsAltimeterAcoustic Modem

Sensor ConfigGPSRF CommsAltimeterCTDSide Scan SonarFL Sonar

Sensor ConfigGPSRF CommsAltimeterAcoustic ModemCTDFL/ Microbath Combo

Battery

Payload Support Board & Processor

Battery

Battery

Battery

Battery

Battery

Battery

Battery

Main Board & ProcMotor Drvs

Battery

Payload Support Board & Processor

Battery

Battery

Battery

Battery

Battery

Battery

Payload Support Board & Processor

Battery

Battery

Battery

Battery

Battery

Ranger: Modular Architecture

Page 13: Maritime Robotics

iRobot Proprietary

Transphibian

Capabilities:• 6 Degrees of Freedom Maneuvering • FBN/SLAM Navigation • Scalable Design• Awkward Payloads

Page 14: Maritime Robotics

iRobot Proprietary

•User Interface: Laptop, Dual monitors with BlueView

Sonar imagery or Top side camera video on one monitor. Other monitor displays overhead view of operations area with vehicle represented at currently reported GPS coordinates. Vehicle Telemetry -

depth, speed, pitch, roll and magnetic heading is also displayed.

RILSOperational Capability•Transit: >8kts•Sonar: 450kHz Horizontal Beam 45°

FOV, 100m Range 900kHz Vertical Beam 45°

FOV, 60m Range 5 frame per second update rate•Mass: 25kg, single man deployable•Radio: 2.4GHz, 1km Range, other radio options are available

Page 15: Maritime Robotics

iRobot Proprietary

Page 16: Maritime Robotics

iRobot Proprietary

•Sub/ship defense torpedo countermeasures

•Up to 15 kts

•Compatible with 3”

signal ejector tube

•High efficiency acoustics projector with towed hydrophone

Next Generation Countermeasures Mod X

Page 17: Maritime Robotics

iRobot Proprietary

Recap of Maritime Robots In the Water:

Seaglider•

Endurance •

Buoyancy-driven

In Development:•

Ranger•

Compact size•

Propeller-driven

Transphibian•

6 degrees of freedom•

Fin-driven

Reacquire, Identify, Localize, Swimmer (RILS)•

Speed

Next Generation Torpedo Counter Measures•

Deployable wings for lift

Page 18: Maritime Robotics

iRobot Proprietary

Future Application of These Technologies

Page 19: Maritime Robotics

iRobot Proprietary

Challenges with existing AUV CONOPS: Littoral Combat Ship (LCS) Notional Mission Cycles –

BPAUV example

Weight:Size:

Time (hrs):

Manning:

BPAUV(Bluefin 12)

Sortie Turnaround Post MissionPre‐Launch

6 12 81 2

5 ‐ 6 5 6 3 ‐ 5 4

Launch Post‐Launch

• Equipment Prep.• Position Vehicle• Launch Prep.

• Recovery• Turnaround Vehicle• Launch

• Recovery• Post Mission Ops.~750 lbs.

10’ L x 21” D

•About 1/3rd to half of mission energy consumed by transit to target zone•29 hours before data is available from mission inception•Average of 5 people to man mission

Page 20: Maritime Robotics

iRobot Proprietary

CNO Guidance for 2011*

*Executing the Maritime Strategy”

(1 October 2010 )

“Way Ahead: •

We will pursue unmanned systems as an integrated part of our force, ensuring that the move to ‘unmanned’

truly reduces personnel requirements. •We will develop a long-endurance, safe power source for UUVs”

“Roughead says he wants to spend about 50% of available UUV research and development money on improving their endurance. Ultimately he would like to see 3-4 weeks of endurance and reserve power for some higher-speed maneuvers and to handle strong underwater currents.”

Aviation Week, 8-25-2010: CNO Speaks about Unmanned Vehicles at AUVSI

Navy will invest in UUV Endurance

Page 21: Maritime Robotics

iRobot Proprietary

Why wait for a breakthrough in battery endurance to achieve unmanned underwater goals?

Page 22: Maritime Robotics

iRobot Proprietary

ADAPSAlternative approach to underwater vehicle energy limits

Page 23: Maritime Robotics

iRobot Proprietary

Future air deployment of AUV’s near targets of interest will reduce transit time, improves tactical utility and relevance

Page 24: Maritime Robotics

iRobot Proprietary

ADAPS passively loitering on surface to establish data link to relay collected data and receive commands from remote control site

Reduced turnaround time on AUV missions is enabled by new digital data link relays deployed on maritime UAV’s

Page 25: Maritime Robotics

iRobot Proprietary

Buoyancy changingmechanism

Wings to supply lift for gliding

Vectored thruster to provide auxiliary or primary propulsion and heading control

Antenna for communication when surfaced

ADAPS Concept Illustration

Page 26: Maritime Robotics

iRobot Proprietary

Sonobuoy support is everywhere in Navy

P-3 Orion

Ship deck

Page 27: Maritime Robotics

iRobot Proprietary

UUV Sensor platforms

Program Deployed from

Average 

Propulsion 

energy  

(W)

Average 

Loitering 

energy 

(W)

Max 

Mission 

duration 

(hrs)

Max 

speed 

( kts )

Nominal 

diameter

Nominal 

Vehicle 

Weight 

in air

Max 

depth 

(m)

BPAUVLCS Mission 

Module 120 50 18 4

53 cm            

( 21 in)

363 kg 

(799 lbs) 6000

LBS‐AUV

TA‐GS‐60 (NAVO) 42 45 70 532 cm 

(12.75 in) 

240 kg 

(530 lbs) 600

MK‐18 

Swordfish

Small craft, RHIB 35 35 22 519 cm             

(7.5 in)

44 kg  

( 97 lbs) 100

SonobuoysP‐3, P‐8, MH‐60, 

Ships NA 10 10 NA

12 cm        

(4.8 in)

18 kgs        

( 40 lbs) 100

ADAPS  (“Air 

–Ranger”)

P‐3, P‐8, MH‐60, 

Firescout, etc 10 4 330 8

12 cm         

(4.8 in)

18 kgs  

( 40 lbs) 200

Page 28: Maritime Robotics

iRobot Proprietary

Things we miss by using robots…

Contact:Paco Santana [email protected]