53
Watershed Success Stories 71st Annual SWCS International Conference July 2427, 2016 Louisville, KY Shanon Phillips, Oklahoma Conservation Commission Vicky Drew, USDANRCS Moderator: Deanna Osmond, North Carolina State University Responder: Larry Elworth, RESOLVE

Watershed success stories phillips

Embed Size (px)

Citation preview

Watershed Success Stories

71st Annual SWCS International ConferenceJuly 24‐27, 2016Louisville, KY

Shanon Phillips, Oklahoma Conservation CommissionVicky Drew, USDA‐NRCS 

Moderator: Deanna Osmond, North Carolina State UniversityResponder: Larry Elworth, RESOLVE

Lessons Learned from Large Federal Watershed Projects

Black Creek 1978-1984Project

Model 1978-1982Implementation Program

The Rural Clean 1980-1995 Water Program

Hydrologic Unit 1991-1994 Area Projects & Demonstration Projects

USEPA Section 319 1991 - presentNational Nonpoint Source Monitoring Program

NIFA CEAP 2004-2011

With dwindling resources and mounting environmental degradation, it is essential that many of the lessons from

NIFA-CEAP be integrated into policy and agency protocol if water resources are to be protected or improved.

Lessons Learned from Large Federal Watershed Projects

1. Conservation planning must be done at the watershed scale with sufficient water quality and potentially modeling information.

2. Before implementing conservation practices, identify the pollutants of concern, and the sources of the pollutants.

3. Identify critical source areas to prioritize conservation practices.

4. Identify watershed farmers’ attitudes toward agriculture and conservation practices to promote adoption.

5. Even after conservation practices have been adopted, continue to work with farmers on maintenance and sustained use.

6. Technical assistance to farmers is most effective when delivered by a trusted local contact and is very people intensive. Reduced funding is eroding the ability of NRCS, extension, and soil & water conservation districts to deliver effective programming.

Lessons Learned from Large Federal Watershed Projects

7. Economic incentives were often required for adoption of conservation practices not obviously profitable or fitting with current farming systems.

8. Conservation practice adoption is a multivariate choice and although economics are exceptionally important, there are many other factors that are part of the decision-making process.

9. Most conservation implementation projects should NOT conduct water quality monitoring. For projects that do conduct water quality monitoring, establish monitoring systems that are designed to specifically evaluate response to treatment and ensure that projects include the necessary resources and expertise.

10. Conservation activities must be monitored as intensively as water quality monitoring, and at the same temporal and spatial scales to link water quality response to land treatment changes.

Where the Rubber Meets the Road:Putting Lessons into Action

Shanon Phillips, Oklahoma Conservation Commission

Vicky Drew, USDA‐NRCS ‐ Vermont

North Canadian River Watershed Projects

Shanon PhillipsOklahoma Conservation Commission

Project BeginningsIn 2004, conservation districts joined together to seek

assistance for a program that would address water quality concerns in the North Canadian River.

Watershed Characterization Landuse is 35% pasture

and 38% winter wheat Water Quality Problems:

Enterococcus Turbidity E. coli Low DO High chlorophyll a

values in downstream Lake Overholser

Watershed Planning Developed plan early in 2008 Formed Local Watershed Advisory Group

Select conservation practices Select cost-share rates

Developed Watershed Model Hired local Project Coordinator Hired local Education Coordinator

Water Quality Monitoring Standard grab

samples monthly + 6 high flow per year

Autosampler flow weighted –TP, discharge, nitrate & ammonia weekly

Weekly during recreation season- bacteria-E. coli, and Enterococcus

$T

$T$T

$T

$T

$T

ÊÚ

ÊÚÊÚ

#

Canton LakeCanton Lake

Lake Overholser

Blaine Co.

Canadian Co.

Dewey Co.

Monitoring Sites$T North Canadian watershed

ÊÚ Autosampler Sites

Education

North Canadian River Project Priorities & Conservation Practices

1. Erosion Control• Conversion to no-till• Cropland conversion to

pasture2. Riparian Area Protection

• Fencing, off-site watering, planting

3. Livestock Management• Cross-fencing, heavy

use areas, nutrient management, watering facilities

4. Septic Tank Replacement

13

Approximately 290 Acres60 acres of cropland180 acres of pasturelandBalance in ponds, creeks, riparian areas

Implemented Best Management Practices include:Rotational grazingRiparian area exclusionSolar watering facilityPond exclusion and let-down areaConversion to no-till

OSU Extension Studies included:Impacts of grazing on no-till and soil healthSequestration of carbon in no-till systemsCover crops and crop rotations in no-tillInter-seeding forage mixes into no-till systemsNutrient management, i.e. N-Strips, grid soil sampling

Demonstration FarmWorking in partnership with OSU Cooperative Extension Service

Implementation Occurred in three

phases, beginning in 2007, 2010, and 2011

158 cooperating landowners

$2,651,715 worth of BMPs installed $1,614,841 state

dollars $746,705 EPA

319 dollars $290,169

landowner dollars

15

Conservation Practices Installed

21,196 acres of continuous no‐till

85,077 LF of riparian area fencing installed

1,345 acres of cropland planted to grass

586 acres of riparian area protected

17 substandard septic systems replaced

26,810 LF  cross fencing installed to facilitate grazing

11,710 acres enrolled of grid soil sampling and nutrient management

34 wells, 28 solar pumps, 8 watering facilities

16

Making a Difference

Over 85,077 linear feet of riparian area fencing has been installed.

Riparian area fencing protects stream banks from erosion and helps filter out soil, nutrients and bacteria.

Parameter DownstrmCalib

DownstrmImplem

DownstrmChange

UpstrmCalib

Upstrm Upstrm ChangeImplem

Concentration (mg/L)

TotPhosphorus 0.8533 0.2186 0.3874 0.1681**(0.000) **(0.000)

Ortho-Phosphorus 0.3538 0.0997 0.1806 0.0951**(0.000) **(0.009)

Nitrate 0.2041 0.0649 0.1922 0.17**(0.000)

TKN 3.45 1.544 1.678 1.072**(0.001) **(0.000)

Total Weekly Load (lbs)

TotPhosphorus 8063 1508 2184 416**(0.000) **(0.000)

Ortho-Phosphorus 3566 804 1016 255**(0.000) **(0.000)

Nitrate 1600 271 1001 210**(0.000) **(0.000)

TKN 31997 14663 9758 2473**(0.000)

Making a Difference‐Water Quality Monitoring

Other Project Results

Private funding from an Electric Cooperative to incentivize carbon sequestration in the watershed

Development of hand-held, more cost-effective green-seeker technology unit to allow the use of n-rich strips

Developed and demonstrated a training and data collection program using Conservation District Employees to collect environmental data (where districts earned extra funds)

Demonstrated that agricultural producers are willing do their part to address environmental concerns

Keys to Success Local Leadership Invested Partners Understanding of the Watershed

Historical water quality data Watershed Model Targeting Watershed plan

Possibility of Success Monitoring for Success-

water quality, landuse change… Long-term program

Vicky DrewUSDA NRCS VT

Water Quality in the Lake Champlain Basin

Watershed Area56% in Vermont37% in New York7% in Quebec 

64%6%

10%

16%4%

Land Use and Vegetation in the Lake Champlain Basin  

Forested

Developed

Water

Ag

Wetlands

Basin Characteristics 

heavy clay lacustrine soils  short growing season (150 days near the 

Lake and 105 days in higher terrain) 35% prior converted wetlands OVER 70 PERCENT of ag is dairy

But, there’s a problem…

Multiple NRCS land treatment Watershed Projects dating back to 1980

Federal Legislation

1990‐Lake Champlain Basin Act  Increased coordination of conservation in basin – basin plan and steering 

committee  Funded through EPA and GLFC ‐ $3 to 6 Million/year

1995 ‐ Vermont adopts Accepted Agricultural practices and regulations on Large Farm Operations

2002 ‐ 1st TMDL approved by EPA 

2006 – Vermont enacts regulations on Medium Farm Operations 2004‐2014 ‐ NRCS obligated over $40 million for water quality practices in the 

Lake Champlain basin 

History of Water QualityImprovement Efforts

Lake phosphorus levels have continued to 

increase despite 30 years of agricultural conservation efforts

Water Quality Trends

Conservation Law Foundation files lawsuit against EPA in 2008 citing a lack of “reasonable assurance” that goals would be reached

Movie “Bloom” released in November, 2010. This film captured the attention of many Vermonters and incited anger and placed blame on the ag sector.

EPA formally revokes approval of first TMDL in January, 2011 Public outcry focused on all government agencies to “do more” Widespread opinion that voluntary approach to conservation would never work

Farmers who have followed NRCS recommendations question the effectiveness of conservation practices installed in the past

State of VT, NRCS, and all partners are under fire to demonstrate proven success and improvement in water quality 

as a result of conservation 

Public Pressure Builds

Phosphorus Loading to Lake Champlain by Land Use

Lake Champlain Phosphorus Load Reductions by Lake Segment

In response to pending TMDL, Act 64 Passed by Vermont Legislature ‐ 2015

Applies to Farms with $2,000 gross income in an average year or 4 or more acres with livestock 

Requirements NRCS 590 standard Cover Crops on floodplain fields Perennial Buffers

Surface Water – 25 feet wide Ditches – 10 feet wide

No Manure applied  On any field Dec. 15 – April 1 On floodplains Oct 15‐ April 15 On 10% slopes or greater In Buffer Zones

Vermont’s New Required Ag Practices (RAPS)

Strengthen Partner Coordination Signed Water Quality MOU with 8 Partners

Improve Understanding of the Problem Edge of Field Monitoring Identified tile drainage as a significant source of soluble phosphorus Using CIG to fill data gaps

Target Resources Technical and Financial Assistance to Critical Source Areas identified through SWAT modeling  Watershed Action Plans for 4 High Priority HUC 12 subbasins

Accelerate Implementation through Increased Funding and New Initiatives RCPP Vilsack Commitment Certainty – VT Environmental Stewardship Program National CIG grant for Nutrient Trading Program

Improve On Farm Planning, Accountability and Tracking Development of a Vermont‐specific, user friendly APEX model Development of a shared NRCS/partner database Tracking progress in meeting P reduction goals in 4 priority watersheds

A Look Back at NRCS Efforts Over the Past Five Years

Edge of Field (EOF) Monitoring

Seven projects on 6 farms started in 2012, two new projects in 2015

Focused on practices important for VT with little or no data on practice effectiveness;

Practices included cover crops, reduced tillage systems, sediment basin, manure incorporation on hayland, drainage water management, cover crops and a grassed waterway

Now have baseline and treatment data

Keys to Success: Understanding the Problem

Summary of EOF Phosphorus Results TP 60 percent higher from cornfields vs. hayfields Hayfields had a higher percentage of soluble P in runoff (84 percent vs. 43 percent)

Overall, approximately 65 percent of the P in surface runoff was in the dissolved form (TDP)

Implications Hay fields can contribute significant amounts of soluble P to surface waters and manure needs to be better managed on these fields (timing, aeration, injection).

Erosion control practices on corn fields are not sufficient to control soluble P losses

SWAT (Soil and Water Assessment Tool)

Watershed Level P Loading

Keys to Success: Targeting the Areas Most in Need

A Closer Look: SWAT Field Level P Loading(74% of P load from 24% of Fields)

NRCS targeted funds to critical source areas through EQIP ranking with Lake Champlain Basin Program matching funds 

100% cost‐share for one year coordinated across the partnership to reach farmers in prioritized hot spots. 

Keys to Success: Targeting the Areas Most in Need

A Steering Committee selected priority watersheds NRCS developed a watershed 

level resource assessment and plan including P loading and reduction estimates 

Local Workgroups developed Tactical Action Plans that identified specific implementation needs and goals

Goal: to greatly accelerate practice implementation in selected, small watersheds (HUC‐12) with focusedoutreach, technical assistance and funding. 

Keys to Success: A Focused Watershed Planning Process

Focused on watersheds that were: Most impaired In the public eye Long term water quality monitoring 

data

Four watersheds will receive prioritized FA and TA over the next four years.

The goal is to apply the most appropriate conservation measures in the most critical areas to achieve water quality improvement.  

Nearly ½ of EQIP funds ($4.6 million in FY 2016) was focused in these priority areas.

Each watershed project includes an agreement with a local partner for coordination, E&O and farmer assistance

Targeting the Most Critical Areas

Watershed Name

Watershed Area (acres)

Total Estimated 

Ag P Loading (lbs 

/yr)

TMDL Reduction 

Goal

Ag P Reduction Goal (lbs 

/yr)

ProjectGoal 

(lbs/yr) (% of TMDL goal)

NRCS Estimated Cost of  Project 

Implemen‐tation

Rock River 22,743 19,248 83% 15,976 7,000(40%)

$8,518,000

Pike River 25,088 9,599 83% 7,967 5,200(65%)

$9,938,000

St. Albans Bay

33,515 23,047 35% 8,066 7,000(87%)

$7,764,000

McKenzie Brook

21,222 43,276* 60% 29,966 15,000(50%)

$10,753,000

2016 Priority Watershed Estimated Ag Phosphorus Loadings 

and Targeted Reductions

Rock River‐Practice Scenario to Reach TMDL Goal 

.Land Cover Selected BMPTotal Practice Acres 

AppliedTP Load Reduction 

(lbs/yr)

Cont. CornCover Crop‐Conservation Tillage‐Manure Injection 1,279 1074

Cont. corn Cover Crop 1,023 563

Cont. Corn Crop Rotation 1,540 739

Corn/Hay Riparian Buffer 34 109

Cropland Grassed Waterays 27 130

Corn/HayReduced Manure P (Nutrient Management and CAP) 3,056 306

Cont. Corn Ditch Buffer 45 878

HayReduced P inputs and Injection 2,300 230

PastureLivestock Exclusion and Riparian Buffer (CREP) 232 719

FarmsteadWaste Management Improvements 48 480

Total Reduction 10,003

TMDL Target 16,000

Locally‐led farmer engagement  Farmer‐to farmer meetings with NRCS, UVM, and key partners

Enhanced Technical Assistance for Farmers  Develop watershed specific action plan to identify four key strategies  Develop a plan of delivery for technical assistance 

Financial Assistance for Farmers through Targeting  Outreach and Education 

Watershed specific fact sheets with key contacts listed (partners and NRCS)  Include state cost share availability  Initiate one‐on‐one contact with farmers to explain goals and options. Develop farmer success stories and promote positive work being accomplished in the watershed Demonstration farms to illustrate conservation practices and benefits.  Soil health signage to celebrate and recognize stewardship

Local Leadership and Coordination Funding support to “work” the Action Plan

Local Action Team Priorities

Outcome: A Comprehensive, 

Adaptable and Efficient Strategic Plan for Implementation

The Problem

Excessive P in Lake 

Champlain from Ag Sources

Enhance Understanding of 

the Problem EOF Monitoring, Watershed Action Plans, Tile Drainage

Tracking, Accountability, and Evaluating 

Success Partner database, APEX, 

Water Quality Monitoring

Efficiently use and target 

conservation funding 

SWAT and CSA’s, tile drainage, APEX, STEP, Watershed Approach

Partner Coordination 

Water quality MOU, cross‐training, RCPP projects for water 

quality

Accelerate Conservation Implementation

RCPP, Vilsack’s Commitment, VT Env. Stewardship Program, 

National CIG for Nutrient Trading Program, Watershed Action Plans 

The Way Things Work

How effective watershed projects are organized and what we can do to improve public and private

sector watershed programs.

PurposeIdentify and articulate the key organizational factors in

effective watershed projects

Watersheds:Tulpehocken Creek, Pennsylvania; Rock River, VermontShenandoah Valley, VirginiaPoint Remove, Arkansas North Canadian River, Oklahoma; Root River, MinnesotaWhatcom County, WashingtonTillamook Bay, Oregon

Characteristics of Effective Watershed Projects

“Happy families are all alike; every unhappy family is unhappy in its own way.” Leo Tolstoy, Anna Karenina

Watershed assessment – Successful projects are based on sound watershed plans or assessments that characterize the nature of the water quality problems, identify sources, prioritize critical areas, & identify conservation practices.

Collaboratively developed implementation plan – Creating the plan collaboratively helps create and reinforce the partnerships that are integral to success.

Creation of a credible set of data - multiple benefits of baseline information, credibility, creating shared knowledge base and commitment

Characteristics of Effective Watershed Projects

Capacity to coordinate and manage project activities -adequate capacity and skill to organize and manage a project; an anchor organization; project coordinator & staffing.

One on one engagement with farmers and landowners -there is no substitute for the direct interaction with a farmer and the trust formed by strong working relationships.

Flexibility ability to respond to site specific conditions on a farm and engender adoption of practices that might not otherwise have been installed.

Appropriate time frame: Watershed planning, creating a shared strategy for implementation, assembling credible data, and developing the trusted relationships extends over multiple years.

ConclusionsWe know how to organize and manage effective watershed

scale projects:• Studies consistently identify the same key factors• Effectively organized and managed projects consistently

achieve substantive resultsHowever most public and private programs are not using

this knowledge on a wide scale to develop successful watershed projects

If we are serious about:• Addressing water quality • Enabling the farming community to improve water quality• Making the best use of our conservation programs and

resourcesOur task is to learn from the experiences of effective project

organizers and to systematically apply those lessons in watershed programs

NIFA CEAP Outreach Information USDA NRCS CEAP Website

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/ceap/ws/?&cid=stelprdb1047821

Book: Osmond, D., D. Meals, D. Hoag, and M. Arabi. 2012. How to Build Better Agricultural Conservation Programs to Protect Water Quality: The National Institute of Food and Agriculture Conservation Effects Assessment Project Experience. Soil and Water Conservation Society. Ankeny, IA.

Fact Sheets Proceedings USEPA Webinar USDA NIFA National Water Quality Conference slides

Discussion and Questions

[email protected]@[email protected]