111
REMOVAL OF PHARMACEUTICALS FROM WWTP STREAMS BY BIOLOGICAL AND PHYSICAL PROCESSES Guillem Llorens Blanch November 3th, 2016

Removal of pharmaceuticals from WWTP streams by biological and physical processes

Embed Size (px)

Citation preview

Page 1: Removal of pharmaceuticals from WWTP streams by biological and physical processes

REMOVAL OF PHARMACEUTICALS FROM WWTP STREAMS BY BIOLOGICAL AND PHYSICAL

PROCESSES  

Guillem  Llorens  Blanch  November  3th,  2016  

Page 2: Removal of pharmaceuticals from WWTP streams by biological and physical processes

! Content  

1.  Introduc>on  2.  Objec>ves  3.  Removal  of  pharmaceu>cal  products  by  

solid-­‐state  fermenta>on  4.  Removal  of  pharmaceu>cals  in  bioslurry  

systems    5.  Post-­‐treatment  of  WWTP  effluent    6.  Concluding  Remarks  

Page 3: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Page 4: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

1. Emerging  Pollutants  2. Bioremedia>on  3. Removal  techniques  

Page 5: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Water  pollu4on  The  introduc>on  of  a  foreign  substance  that  leads  to…  

Quality  lost  Threat  for  the  environment  and  the  health  

 Common  diseases  of  water  pollu>on:  – Waterborne  diseases  – Metal  poisoning  – Reproduc>ve  altera>ons  – Cancer  

EMERGING    POLLUTANTS  

Page 6: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Emerging  Pollutants  (EPs)   Synthe>c  and  natural  products   Heterogenic  group   Not  yet  regulated     Detected  in  salt-­‐water,  freshwater,  wastewater,  sludges  and  soils  

 Few  ng·∙L-­‐1  to  thousands  µg·∙L-­‐1   Not  clearly  classificated  

EMERGING    POLLUTANTS  

Page 7: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

EPs  classifica4on  EMERGING    POLLUTANTS  

Group   Abbrevia4on   Observa4ons  

Pharmaceu>cal  products   PhACs   Prescribed  and  non-­‐prescribed  drugs  &  drug  abuse  substances  

Personal  care  products   PCPs   Cosme>c  and  personal  hygiene  products  

Endocrine-­‐disrup>ng  chemicals   EDCs   Natural  &  synthe>c  chemicals  

Halogenated  compounds   PFCs   Surfactants,  lubricants,  paints  &  fire  retardants  

Pharmaceu>cal  and  personal  care  products  

PPCPs   PhACs  +  PCPs  

Transforma>on  products   TPs   PPCPs  transformed  in  WWTPs  

Page 8: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Fate  and  distribu4on  Different  from  one  country  to  another   Depends  on  the…  – Produc>on  – Consump>on  

 EPs  reach  the  environment  through…  

EMERGING    POLLUTANTS  

Seasonal  fluctua>ons  

Smart,  J.;  9  ways  guys  pee  

Page 9: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

EPs  in  WWTPs  Plants  designed  to  remove  organic  maaer,  nutrients,  SS,  metals  and  pathogens   EPs  goes  through  the  treatment  without  relevant  concentra>on’s  decrease  

Why  is  that  happening?  

EMERGING    POLLUTANTS  

Page 10: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

EPs  in  WWTPs   Not  tradi>onally  considered  as  pollutants   Low  concentra>ons   Wide  heterogenic  group   Seasonal  fluctua>ons   Detected  in  all  environmental  compartments  

EMERGING    POLLUTANTS  

Page 11: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

EPs  in  WWTPs.  Who  does  EPs  affect  the  environment?  EMERGING    POLLUTANTS  

.  

.   .  

EPs  pollu>on  

WWTP  Opera>onal  

Consump>on  

Hydrophobicity  

Infiltra>ons  

Sludge  

Leachates  

Page 12: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

EPs  in  WWTPs.  Valorisa4on  of  sewage  sludge  EMERGING    POLLUTANTS  

Anaerobic  Diges>on  

Biogas  

Digestate  

Liquid  liquor  

Compos>ng   Compost  

Land  applica>on  

Sludge  

40%  –  60%  of  OM  CH4  (60-­‐65%)  +  CO2  (30-­‐35%)  

Stable,  nutrients  rich  &  pathogen  

free  

Nutrients,  structure,  water  infiltra>on,  porosity  &  erosion  

Page 13: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

EMERGING    POLLUTANTS  

Wastewater  

WT  

Consump>on  

Sludge  Condi>oning  

Soil  

WWTP  EPs  

Hydrophilic  EPs  

Natural    

water  bodies  

Hydrophobic  EPs  

Page 14: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Bioremedia4on  Elimina>on  of  pollutants  through  microorganisms   In  contrast  to  physical  &  chemical  processes:  - Higher  opera>onal  >mes  - Lower  inputs  

 Can  be  performed  in  situ  o  ex  situ   Factors:  energy  source,  environmental  factors,  bioavailability  and  bioac>vity  

BIOREMEDIATION  

,  what  is  it?  

Page 15: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Strategies  BIOREMEDIATION  

Natural  aSenua4on   Bios4mula4on   Bioaugmenta4on  

Who?   Authochthonous   Authochthonous   Foreign  microorganism  

What  is  supplied?  

Nothing  (monitoring)  

Bulking  material,  water,  nutrients  and/or  aera>on  

Microorganism  +  bulking  material,  water,  nutrients  and/or  aera>on    

Page 16: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Fungal  remedia4on  1980s:  White-­‐rot  Fungi  (WRF)  - Basidiomycetes  - Filamentous  fungi  - Wood  decomposers  

 Mineralisa>on  and  depolymerisa>on  of  lignin:  - Extracellular  enzyma>c  system  (LMEs)  -  Intracellular  enzyma>c  system  (Cytochrome  P-­‐450)  

BIOREMEDIATION  

Page 17: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Trametes  versicolor   Widely  distributed  in  the  environment   Able  to  growth  in  solid  &  liquid  cultures   Extracellular  enzyma>c  system  with  high  red-­‐ox  capacity:  MnP,  LiP  and  Laccase  

 Intracellular  enzyma>c  system:  Cytochrome  P450  

BIOREMEDIATION  

Page 18: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

BIOREMEDIATION  

Trametes  versicolor  

Liquid  matrix  

Effluents  treatment  

Solid  matrix  

Sludge  and  soil  

treatment  

 Synthe>c  dyes    

Pharmaceu>cals  and  Personal  Care  Products  

(PPCPs)    

Endocrine-­‐Disrup>ng  Chemicals  (EDCs)  

 Polycyclic  Aroma>c  Hydrocarbons  (PAHs)  

 Brominated  flame  

retardants    

Chlorinated  solvents  (PCE,  TCE)  

Air  pulsed  fluidized  bed  

Biopile  (up)  and  bioslurry  (down)  

Page 19: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Removal  techniques  for  EPs  WWTPs  effluents  will  be  used  for  further  applica>ons,  its  necessary  to  remove  EPs  

REMOVAL  TECHNIQUES  

  Fungal  bioremedia>on,  due  to  its  performance,  can  by  used:  -  For  low  volumes/flows  -  Where  is  produced  (in  situ)  or  specific  streams  of  

WWTPs    For  higher  volumes/flows    physical  

process    

Page 20: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Removal  techniques  for  EPs  WWTPs  effluents  will  be  used  for  further  applica>ons,  its  necessary  to  remove  EPs  

REMOVAL  TECHNIQUES  

Sludge  

 Water  

 Water  

Slurry-­‐phase  bioreactor  

Solid-­‐phase  bioreactor  

Liquid  effluent   Adsorp>on  

Page 21: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Slurry-­‐phase  bioreactor   Also  known  as  bioslurry   For  pollutants  absorbed  in  solid  par>cles   Ex  situ,  reactor:  -  Suspension  of  a  solid  in  water  (5  –  40%  w/v)  -  Agita>on  -  Aera>on  

 Indigenous  microorganisms  or  inoculated   Addi>on  of:  nutrients,  neutralising  agents,  surfactants  and/or  co-­‐metabolites  

 Monitored  parameters:  temperature,  pH  and  dissolved  oxygen  

REMOVAL  TECHNIQUES  

Page 22: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Solid-­‐phase  bioreactor   Also  known  as  biopiles   Ex  situ  or  in  situ   Engineered  biological  process  in  order  to  mineralise  pollutants  -  Sludge  mixed  with  bulking  material  - Complementary  systems:  aera>on,  irriga>on  and  leachate  collector  

- Monitored  parameters:  moisture,  pH,  heat,  nutrients  and  oxygen  

 Low  inputs  and  maintenance  (cost-­‐effec>ve)  

REMOVAL  TECHNIQUES  

Page 23: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

INTRODUCTION  

Adsorp4on  techniques   Removal  of  organic  and  inorganic  pollutants   In  situ  or  ex  situ   Adsorbents  can  be  natural  or  synthe>c     Surface  phenomenon:  liquid  that  contains  a  solute  contacts  a  porous  solid  

 Solutes  retained  in  the  porous  by  liquid-­‐solid  intermolecular  aarac>on  forces:  -  Electrosta>c  aarac>on  - Chemical  mechanisms  - Physical  mechanisms  

REMOVAL  TECHNIQUES  

Page 24: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

OBJECTIVES  

Page 25: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

OBJECTIVES  

AIM…    

to  develop  novel  biological  and  physical  processes  to  remove  PPCPs  in  different  streams  

of  WWTPs  

Page 26: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

OBJECTIVES  

HOW?    Finding  the  best  condi>ons  to  colonize  sewage  sludge  by  

Trametes  versicolor  using  lignocellulosic  substrate   Assessing  the  strategies  to  remove  PhACs  in  bioslurry  and  

biopiles  systems  inoculated  with  Trametes  versicolor  under  non-­‐sterile  condi>ons  

 Determining  the  applicability  of  the  anaerobic  diges>on  as  a  valorisa>on  method  for  the  fungal  biomass  

  Studdying  the  microbial  communi>es  evolu>on  in  fungal  mediated  biopiles  

  Inves>ga>ng  the  u>liza>on  of  low-­‐cost  sorbents  to  adsorb  EPs  as  post-­‐treatment  of  a  WWTP’s  effluent    

Page 27: Removal of pharmaceuticals from WWTP streams by biological and physical processes

! REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

Page 28: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

1.  Introduc>on  2.  Methodology  3.  Results  

 Total  drugs  removal   Microbial  community  evolu>on  

Page 29: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

As  previously  men4oned…   Sludge  is  an  inevitable  waste  of  any  WWTP   Valorised  in  order  to  improve  agricultural  soils  (sludge  as  amendment)  

 Tradi>onal  dewatering  techniques  and  stabiliza>on  methods  do  not  remove  all  EPs  

 Must  be  treated  before  its  applica>on  

 

INTRODUCTION  

Page 30: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

Trea4ng  sewage  sludge  Expensive  &  not  efficient  physicochemical  processes  has  been  proposed  to  remove  EPs   In  contrast,  fungal  bioremedia>on:  sustainable  &  economical  - Fungi  degrade  a  wide  variety  of  compounds  - Minimum  maintenance  - Low  inputs  

 

INTRODUCTION  

Page 31: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

Key  role  of  substrate…   Fungal  colonisa>on  depends  on  it   Must  act  as  bulking  agent   Extensively  available   Locally  produced  

Economical  &  sustainable  

INTRODUCTION  

Page 32: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

Agro-­‐industrial  waste  

Forestry  by-­‐products   Valorised  waste  

What  is  it?  Residues  from  

growing,  processing  &  trea>ng  food  

Non-­‐commercial  wood  by-­‐products  

Green  waste:  food  &  small-­‐size  plant  

wastes  

Useful  because  of…   OM  (BOD  &  COD)   Structure  &  lignin   Nutrients,  OM  &  

lignin  

Examples:  Palm  fiber,  seeds  &  shells,  brewery  &  fish  

ac>vi>es  

Sawmill,  sawdust,  trimmings  &  bark   Compost  

When  used  as  substrate…  

 LMEs    Removals    Structure  

 LMEs    Removals    Structure  

 LMEs  ≈  Removals    Structure  

Agro-­‐industrial  waste  

Forestry  by-­‐products  

What  is  it?  Residues  from  

growing,  processing  &  trea>ng  food  

Non-­‐commercial  wood  by-­‐products  

Useful  because  of…   OM  (BOD  &  COD)   Structure  &  lignin  

Examples:  Palm  fiber,  seeds  &  shells,  brewery  &  fish  

ac>vi>es  

Sawmill,  sawdust,  trimmings  &  bark  

When  used  as  substrate…  

 LMEs    Removals    Structure  

 LMEs    Removals    Structure  

Agro-­‐industrial  waste  

What  is  it?  Residues  from  

growing,  processing  &  trea>ng  food  

Useful  because  of…   OM  (BOD  &  COD)  

Examples:  Palm  fiber,  seeds  &  shells,  brewery  &  fish  

ac>vi>es  

When  used  as  substrate…  

 LMEs    Removals    Structure  

INTRODUCTION  

Page 33: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

Different  substrates  can  be  used  for  fungal  biopiles…  but  not  all  work  as  bulking  material   According  to  previous  studies  &  to  Valen>n  et  al.  (2009):  pine  bark  as  substrate  

 Bark  of  Pinus  halepensis:  - The  most  common  tree  in  Catalonia  - The  lowest  economical  value  

INTRODUCTION  

Page 34: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

The  WWTP  of  El  Prat  de  Llobregat   419,000m3·∙d-­‐1  wastewater   2,000,000  equivalent  popula>on  

INTRODUCTION  

Polymers  

Page 35: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

Aim…  Rodríguez-­‐Rodríguez  (2014)  treated  dry  sludge  in  biopiles  with  a  non-­‐scalable  bulking  material:  

wheat  straw  Determine  if  WWTP  sludge  could  be  treated  in  

fungal  biopiles  systems  with  inexpensive  lignocellulosic  substrate  

INTRODUCTION  

Page 36: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

METHODOLOGY  

PPPCs  at  real  concentra>ons  

SUSBTRATE  

DRY  SLUDGE  

Trametes  versicolor  

Total  PPCPs  removal  

Laccase  ac>vity  

Microbial  community  

0  –  22  days  

23  –  42  days  

Triplicates  &  

Sta>s>c  analysis  

Page 37: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

Biopile  systems  Pre-­‐grown  fungus  onto  sterile  pine  barks  (7d)  +  non-­‐sterile  dry  sewage  sludge     Enzyma>c  Ac>vity:  oxida>ve  state  of  T.versicolor  

 Drugs  concentra>on:  removal  capaci>es   Microbial  iden>fica>on:  communi>es  dinamics  

RESULTS  

Page 38: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

Maximum  enzyma>c  ac>vity  by  day  10:  0.007±0.002  U·∙g-­‐1   Compared  to  other  substrates:  lower  degradability  

 Degrada>on  pathway  involves:  metabolism,  co-­‐metabolism  &  detoxifica>on  mechanisms  

RESULTS  

ENZYMATIC  ACTIVITY  

Page 39: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

RESULTS  

TOTAL  DRUGS  REMOVAL  

!"#$%#&'()*&#+,-.*)*#+,

&/.&'.)$#)*/.,0,123,4.565789,

1'%/:#+;,4<9,0,23,!"#$%"&%"'

()$*+,-.($)&/0012&3$)'%"'

()$*+,-."1&/4012&5"'()$*+,-."1&

/4012&

=.#+5';*&;,#.>,#.)*7*.?+#%%#)/$@,>$(5;,!"#$ %&'()$ *$ %('+,$

#$ %-'(($ *$ .'%-$ (+'&/$ *$ .'(/$012345467$ -'-+$ *$ .')8$

#,%%')%$ *$ .'%8$ ,.'8&$ *$ %'..$

9457:67$ .'(-$ *$ .'88$#, .'..$ *$ .'..$ #$

=.)"'+%*.)*&,;7<=>:?4@$ +'&+$ *$ .'(+$ 88',,$ *$ .'8($ 8%'&.$ *$ .'88$ +,'.)$ *$ .'+,$

=.)*A*/)*&;,ABC$ /'-($ *$ .'&+$ ),'-)$ *$ %'..$ ),'-)$ *$ %'..$ ),'-)$ *$ %'..$

=.)*"@B'$)'.;*:',>$(5;,D>@45:E:67$ %)'%)$ *$ +'-($ -('-+$ *$ .'-($ -&'/)$ *$ .'+.$ )8',)$ *$ .')($

C#+&*(%,&"#..'+,A+/&D'$;,F:@G:=H7>$ /'&%$ *$ %'%,$ %..'..$ *$ %'..$ %..'..$ *$ %'..$ %..'..$ *$ %'..$

3*($')*&,IJK$ )'&)$ *$ .'%/$ -,'8+$ *$ .'-,$ )8'(.$ *$ &'%8$ )8'(.$ *$ &'%8$K=>?L@4?:6$ ,'.&$ *$ .'+%$ (%'&+$ *$ .'(8$ %+',%$ *$ .'%/$ +('&($ *$ .'+-$

E*B*>,$'5(+#)/$;,#.>,&"/+';)'$/+,+/F'$*.5,;)#)*.,>$(5;,M7>N:OP4H:@$ (/'+8$ *$ %%'(8$ /.',-$ *$ .'/%$ +-'.($ *$ .'+-$ /&'%($ *$ .'/&$DG4P<=?G=G:6$ 8.',&$ *$ ('8($ )('.%$ *$ .')($ ,+'--$ *$ .',+$ &(').$ *$ .',-$

!;@&"*#)$*&,>$(5;,9:G=@4EP=>$ ,+'++$ *$ %.'-/$ -8',/$ *$ .'-($ %&'/&$ *$ .'8.$ (+'-+$ *$ .'(+$A7PGP=@:67$ +8'+)$ *$ +'/&$ &8'&,$ *$ %'..$ &8'&,$ *$ %'..$ &8'&,$ *$ %'..$Q@L417G:67$ +%'%-$ *$ )'(&$ )%'+($ *$ .')8$ ,8',&$ *$ .',($ ,+'%/$ *$ .',+$R=P417G:67$ -8'%($ *$ +'+%$ ),'()$ *$ .'),$ ,&'(8$ *$ .',&$ ),'+,$ *$ .'))$KP=H45467$ (-'&%$ *$ +'&,$ ,+'..$ *$ .',+$ +(',&$ *$ .'+-$ )('))$ *$ .')-$S76@=N=1:67$ 8&'/-$ *$ %',8$ ('(-$ *$ .'.($ #$ %/'/&$ *$ .'%,$9"J$ +'.+$ *$ .'/&$

#, #,.'-8$ *$ .'..$

0@=6H=E:67$ -',&$ *$ %'(%$ %..'..$ *$ %'..$ %..'..$ *$ %'..$ %..'..$ *$ %'..$

K4G=@$ -(.',&$ *$ %.('8/$ +/')&$ *$ .'+,$ -&'%)$ *$ .'+8$ //'-+$ *$ .'&/$#$T7>4<=@$64G$=??7??75U$N:6=@$346376GP=G:46$V=?$W:XW7P$GW=6$GW7$:6:G:=@$

19  drugs  at  0d  430.79  ±  103.26  ng·∙g-­‐1  

psychiatric  drugs  8  compounds  (42%)  Amount:  295.79  ±  39.74  ng·∙g-­‐1  (69%)  

5  drugs  Conjuga>on  process  

Page 40: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

RESULTS  

TOTAL  DRUGS  REMOVAL  

Re-­‐inoculated  144.51  ±  4.06  ng·∙g-­‐1  

66.45  ±  0.96  %  

Non-­‐re-­‐inoculated  218.92  ±  49.71  ng·∙g-­‐1  

49.18  ±  0.52  %  

Control  207.22  ±  47.15  ng·∙g-­‐1  

51.90  ±  0.54  %  

Page 41: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

Microbial  diversity  in  the  biopiles  system  assessed  by  - PCR-­‐DGGE  fingerprints  - Phylogene>c  affilia>ons  

 Inoculated  cultures:  0d,  10d,  22d,  23d  &  42d   Non-­‐inoculated  cultures:  0d,  22d  &  42d  

RESULTS  

MICROBIAL  COMMUNITY  EVOLUTION  

Page 42: Removal of pharmaceuticals from WWTP streams by biological and physical processes

PCR-­‐DGGE  fingerprints  of  fungal  popula4on  

T.versicolor  T.versicolor  

Page 43: Removal of pharmaceuticals from WWTP streams by biological and physical processes

PCR-­‐DGGE  fingerprins  of  bacterial  popula4ons  

Lysobacter  spp.  

Page 44: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

RESULTS  

MICROBIAL  COMMUNITY  EVOLUTION  

Fungal  community  11  different  fungi  detected   Ini>al  >me    

-  T.versicolor:  predominant  band  (>99%)  for  inoculated  biopiles  -  No  predominant  band  for  non-­‐inoculated  biopiles  

 Fungal  community  came  from  substrate   8  fungi  reported  to  degrade  EPs   4  fungi  had  mycosta>c  capabili>es  

Fungus   Order   Detected  at  4mes  (d)  

Acremonium  sp.   Hypocreales   10  

Pseudallescheria  ellipsoidea   Microascales   0  

Peniophora  cinerea   Russulales   0  

Rhodotorula  mucilaginosa   Sporidiobolales   0  

Coriolopsis  galica   Polyporales   42  

Page 45: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

RESULTS  

MICROBIAL  COMMUNITY  EVOLUTION  

Fungal  community  11  different  fungi  detected   Ini>al  >me    

-  T.versicolor:  predominant  band  (>99%)  for  inoculated  biopiles  -  No  predominant  band  for  non-­‐inoculated  biopiles  

 Fungal  community  came  from  substrate   8  fungi  reported  to  degrade  EPs   4  fungi  had  mycosta>c  capabili>es  

Fungus   Order   Detected  at  4mes  (d)  

Trichosporon  asahii   Tremellales   22  &  42  

Wickerhamomyces  anomalus   Saccharomycetales   42  

Meyerozyma  guilliermondii   Saccharomycetales   22  &  42  

Meyerozyma  sp.   Saccharomycetales   42  

Page 46: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

Bacterial  community  23  different  bacteria  detected   Ini>al  >me:  organisms  from  Cloistridiales  order  (obligate  anaerobes)  

 Predominant  organism:  Lysobacter  sp.   First  days:  11  organisms  from  Bacillales  order   Final  days:  Lysobacter  sp.,  Alcaligenes  sp.,  Salinimicrobium  sp.,  Pedobacter  bauzanensis  &  Brevibacterium  siliguriense  

RESULTS  

MICROBIAL  COMMUNITY  EVOLUTION  

Page 47: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

Global  community  Fungal  &  microbial  communi>es  disturbed  by  the  inocula>on  event   Fungal  community:  -  Inoculated:  3  prevalent  species,  1  lignocellulosic  decomposer,  2  with  mycosta>c  abili>es  &  all  with  pollutant  removal  abili>es  

- Non-­‐inoculated:  2  prevalent  species,  both  with  inhibitory  systems  &  pollutant  removal  abili>es  

 Bacterial  Community:  - Disturbed  adding  bulking  material,  water  &  O2  -  Similar  evolu>on  of  inoculated  &  non-­‐inoculated  

RESULTS  

MICROBIAL  COMMUNITY  EVOLUTION  

Page 48: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  BY  SOLID-­‐STATE  FERMENTATION  

 T.versicolor  improved  the  drugs  removal  from  sewage  sludge  in  biopiles  systems  with  pine  bark  as  substrate  under  non-­‐sterile  condi>ons  

 T.versicolor  was  s>ll  in  the  biopiles  (at  least)  un>l  day  23  

 Fungus’  re-­‐inocula>on  led  to  improved  removal  rates  

 Addi>on  of  bulking  material  and  fungus  inoculum  changed  the  microbial  communi>es  

 Similar  evolu>on  for  both  inoculated  and  non-­‐inoculated  cultures  

CONCLUSIONS  

Page 49: Removal of pharmaceuticals from WWTP streams by biological and physical processes

! REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Page 50: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

1.  Introduc>on  2.  Methodology  3.  Results  

 T.versicolor  in  liquid  cultures   Bioslurry  at  Erlenmeyer  scale   Bioslurry  at  reactor  scale  

Page 51: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Membrane  Biological  Reactor  (MBR)  MBR  system  combines  a  suspended  biomass  reactor  with  a  filtra>on  process  (no  need  for  a  sealer)   Interes>ng  way  to  improve  exis>ng  WWTPs:  technological  improvement  and  cost  reduc>on  

 High  cellular  reten>on  >me  and  high  biomass  concentra>on:  promotes  the  biodegrada>on  of  organic  contaminants    

 Two  configura>ons:  -  Internal/submerged  configura>on  -  External/side-­‐stream  configura>on  

INTRODUCTION  

Page 52: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

WWTP  of  Terrassa  Designed  to  treat  75,000  m3·∙d-­‐1  of  urban  and  industrial  wastewater   MBR  with  internal  configura>on:  - Q:  7,200m3·∙d-­‐1  

- TSS:  4-­‐5  g·∙L-­‐1  

INTRODUCTION  

Page 53: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Aim…    Determine  the  capacity  of  Trametes  versicolor  to  remove  drugs  from  raw  MBR  sludge  in  

bioslurry  systems  Evaluate  the  valorisa4on  of  fungal  bioslurry’s  

solids  in  an  anaerobic  digester  

INTRODUCTION  

Page 54: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

METHODOLOGY  

T.v.  in  liquid  cultures  

T.v.  in  bioslurry  at  Erlenmeyer  

scale  

T.v.  in  bioslurry  at  reactor  scale  

Growth  &  removal  

Laccase  Glucose  

HZT  (10ppm)  

 9  days  

Media  effect  &  (non-­‐)sterile  condiNon  

Laccase  Glucose  

HZT  (10ppm)    

10  days  

Spiked  drug  

Drugs  removal  under  non-­‐

sterile  condiNon  

Laccase  PPCPs  μorgs    

15  days  

Non-­‐spiked  drugs  

Bioreactor  

Anaerobic  Diges4on  

Page 55: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Liquid  cultures  

METHODOLOGY  

100mL  growing  medium  

Trametes  versicolor  10ppm  

HZT  

130rpm  /  25ºC  /  9d  

HZT  quan>fica>on  

Laccase  ac>vity  

Glucose  consump>on  

Triplicates  &  

Sta>s>c  analysis  

Page 56: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Bioslurry  in  Erlenmeyer  

METHODOLOGY  

100mL  

Trametes  versicolor  10ppm  

HZT  Only  for  spiked  

130rpm  /  25ºC  

HZT  quan>fica>on  

Laccase  ac>vity  

Glucose  consump>on  Spiked  Cultures  

Defined  Glucose  

No  nutrients  (sterile)  No  nutrients  (non-­‐sterile)  

Non-­‐spiked  (No  nutrients)  sterile  non-­‐sterile  PPCPs  quan>fica>on  

Microbial  analysis  

Triplicates  &  

Sta>s>c  analysis  

Page 57: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Bioslurry  at  reactor  scale  

METHODOLOGY  

Trametes  versicolor  115rpm  /  5d  

PPCPs  quan>fica>on  

Laccase  ac>vity  

5L  raw  sludge  

pH  control  

Anaerobic  diges>on  Triplicates  

&  Sta>s>c  analysis  

Page 58: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

Anaerobic  Diges4on:  BMP  Test  

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

METHODOLOGY   Anaerobic  diges>on   VT:  1L  

VW:  0.6L  [VS]:  3gVS·∙L-­‐1  

Sta>c  Condi>ons  36ºC  

Pressure  increment  

Biogas  quan>fica>on  

Triplicates  &  

Sta>s>c  analysis  

Page 59: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

Anaerobic  Diges4on:  Inoculum  selec4on  

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

METHODOLOGY   VT:  1L  

VW:  0.6L  [VS]:  1.5gVS·∙L-­‐1  

Sta>c  Condi>ons  36ºC  

Pressure  increment  

Biogas  quan>fica>on  

AD  inoculums  Terrassa  Sabadell  Blanes  

4.0  gCOD-­‐VFA·∙L-­‐1  (C2:C3:C4=  73:21:04  gCOD)  2mL·∙L-­‐1  nutrients  pH  =  7  

Triplicates  &  

Sta>s>c  analysis  

Page 60: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Liquid  cultures  Degrada>on  experiments  in  spiked  liquid  medium  cultures  were  carried  out  at  op>mal  T.versicolor  growth  condi>ons   Assessment  of  fungus  capacity  to  grow  and  remove  spiked  drugs  in  liquid  medium  - Spiked  drug:  Hydrochlorothiazide  (HZT)  

RESULTS  

Page 61: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Liquid  cultures  

RESULTS  

Removed:  45%  Adsorbed:  10%  Degraded:  35%  

Page 62: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Spiked  bioslurry  Once  the  removal  capaciPes  of  T.versicolor  in  

liquid  medium  were  assessed…  Determine  the  effect  of  media  composi4on  on  the  degrada>on  of  spiked  HZT:  - MBR  sludge  - 3  mediums:  complete,  glucose  &  no-­‐nutrient  - Sterile  &  non-­‐sterile  condi>ons  

 

RESULTS  

Page 63: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

RESULTS  

Spiked  bioslurry  

Medium     Complete     Glucose   No-­‐nutrient  (sterile)  

No-­‐nutrient  (non-­‐sterile)  

Raw  sludge  (non-­‐sterile)  

Laccase  (max)  

322  U·∙L-­‐1  (4d)  

198  U·∙L-­‐1  (4d)  

331  U·∙L-­‐1  (4d)  

0   n.a.  

Removal   13.8  %   71.4  %   69.1  %   93.2  %   94.1  %  

Page 64: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Spiked  bioslurry   Medium  affects  the  degrada>on  of  HZT  

RESULTS  

Parameter   Value  

pH   5.16  

TSS  (g·∙L-­‐1)   3.98  ±  0.04  

VSS  (g·∙L-­‐1)   2.43  ±  0.03  

TC  (mg·∙L-­‐1)   181.789  ±  4.72  

TOC  (mg·∙L-­‐1)   74.348  ±  5.20  

TAN  (mg·∙L-­‐1)   42.9  ±  0.04  

Page 65: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Spiked  bioslurry   Medium  affects  the  degrada>on  of  HZT   HZT  was  degraded  in  all  experimental  cultures:  - Highest  rate    systems  without  added  nutrients  

 No-­‐nutrient  medium  was  selected  for  subsequent  experiments    

RESULTS  

Page 66: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Non-­‐spiked  bioslurry  Once  the  operaPonal  condiPons  were  selected…  Non-­‐spiked  fungal  bioslurry  under  non-­‐sterile  condi>ons  at  Erlenmeyer  scale   Assessment  of  fungus’  efficiency  to  eliminate  PPCPs  at  real  concentra4ons    

 Evaluate  how  the  fungal  inocula>on  would  affect  the  autochthonous  microbial  popula4on  of  the  sludge    

RESULTS  

Page 67: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

RESULTS  

!"#$%#&'()*&#+,-.*)*#+,&/.&'.)$#)*/.,

0,,12,3.456789,

:'%/;#+,<*'+=>,3?9,@!

!"#$%&'()*+,-()./&)+$#"*/(/#"-0+

!"#$%&'()*+,"#"1-()./&)+$#"*/(/#"-0+

2#"1/"#$%&'()*+,"#"1-()./&)+$#"*/(/#"-0+

A.#+4'>*&>,#.=,#.)*7*.B+#%%#)/$<,=$(4>,

"#$! %&'()! *! +(,! -+()!*!-(%! .'(.!*!-(%! #,

$/0123410! ''(,! *! 5()! 56(,!*!%(%! #, #,

78092:;14</01! ..(5! *! %(,! &.(&!*!.(6! &.(&!*!.(6! &.(&!*!.(6!

=4>0;10! -%(+! *! %(-! -+(&!*!,(%! %,,(,!*!,(%! +%()!*!,(%!

$?4<@</0123410! &(6! *! ,(-! .)(+!*!,(6! .)(+!*!,(6! .)(+!*!,(6!

$;?4A;82:! 6(%! *! ,(&! %,,(,!*!,(-! %,,(,!*!,(-! %,,(,!*!,(-!

A.)*"<C'$)'.>*;',

B2CD2?921! %-6()! *! %(+! -&(.!*!5(.!! ''(-!*!5(.! ''(-!*!5(.!

A.)"'+%*.)*&,

E0F2:;D4C! %,(.! *! ,(6! %,,(,!*!,(6! 5(%!*!,(6! -,(.!*!,(6!

A.)*7DE,

G21;9;>;10! -%(+! *! -(+! %,,(,!*!,()! %,,(,!*!,()! +)(5!*!,()!

F#+&*(%,F"#..'+,G+/&H'$>,

H;C9;230:! 5-('! *! ,(.! %,,(,!*!,(%! %,,(,!*!,(%! %,,(,!*!,(%!

I4?F0?2<2:;C! %'(.! *! ,(-! ,(,!*!%(&! .%(-!*!%(&! +()!*!%(&!

B0?2<2:;C! %&(5! *! ,(-! %,,(,!*!,(6! %,,(,!*!,(6! +,(.!*!,(6!

A.)*@*/)*&>,

=;<?4JC4A28;1! -.)&('! *! ))+(+! '+()!*!%(-! &%(,!*!%(-! 5&(6!*!%(-!

KLM! )+)%(5! *! %.-(&! ',(6!*!,('! &5(6!*!,('! 5%(6!*!,('!

73;9/?4:@8;1! 6+5(.! *! 5-(,! +'(&!*!,(&! +&(.!*!,(&! +)('!*!,(&!

NOM! %6'()! *! )(.! +6(,!*!,(&! +6(.!*!,(&! +)(.!*!,(&!

=C2?;9/?4:@8;1! .6(+! *! %(&! +6(+!*!,(-! %,,(,!*!,(-! 5)(5!*!,(-!

#GO! 5.()! *! '(6! +%(%!*!,(5! %,,(,!*!,(5! .'(.!*!,(5!

A.)*C+#)'+'),=$(4,

=C4<;>?4P0C! %%(%! *! ,(-! %,,(,!*!,(%! %,,(,!*!,(%! %,,(,!*!,(%!

F/.)$#>),%'=*(%,

Q4<?4:;>0! 5+,(6! *! 5-()! 5.(+!*!6(6!! %,,(,!*!6(6! %,,(,!*!6(6!

2*($')*&>,

RS#! 5,.(6! *! +(-! ++(%!*!%(%! -'(%!*!%(%! #,

LT?4D0:;>0! -6&(,! *! %,(,! .'(.!*!.(6! )5(5!*!.(6! .%(.!*!.(6!

!><&"*#)$*&,=$(4>,

=;92C4<?2:! )+6(5! *! %-(-! +%('!*!,(&! 5.(+!*!,(&! 5)(%*!,(&!

B01C2J2A;10! )--(%! *! .(.! &&('!*!,(-! 5('!*!,(-! #,

E4?230<2:! '5('! *! )(,! %,,(,!*!%(+! 55(,!*!%(+! -'(5!*!%(+!

=US! &&(+! *! )(%! 5+(,!*!,(5! #, #,

#?234>410! -5(%! *! %(-! %,,(,!*!,(5! %,,(,!*!,(5! %,,(,!*!,(5!

KC2132<;10! %5(-! *! %(&! %,,(,!*!,()! %,,(,!*!,()! .+(&!*!,()!

I/)#+J, %,V%6%(6! *! 6.5(%! !

38  PhACs  detected  at  ini>al  >me                  (11  BQL)  

[10,152  ±  574  ng·∙L-­‐1]  5  PhACs  showed  

nega>ve  elimina>on  rate  

Page 68: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

RESULTS  

!"#$%#&'()*&#+,-.*)*#+,&/.&'.)$#)*/.,

0,,12,3.456789,

:'%/;#+,<*'+=>,3?9,@!

!"#$%&'()*+,-()./&)+$#"*/(/#"-0+

!"#$%&'()*+,"#"1-()./&)+$#"*/(/#"-0+

2#"1/"#$%&'()*+,"#"1-()./&)+$#"*/(/#"-0+

A.#+4'>*&>,#.=,#.)*7*.B+#%%#)/$<,=$(4>,

"#$! %&'()! *! +(,! -+()!*!-(%! .'(.!*!-(%! #,

$/0123410! ''(,! *! 5()! 56(,!*!%(%! #, #,

78092:;14</01! ..(5! *! %(,! &.(&!*!.(6! &.(&!*!.(6! &.(&!*!.(6!

=4>0;10! -%(+! *! %(-! -+(&!*!,(%! %,,(,!*!,(%! +%()!*!,(%!

$?4<@</0123410! &(6! *! ,(-! .)(+!*!,(6! .)(+!*!,(6! .)(+!*!,(6!

$;?4A;82:! 6(%! *! ,(&! %,,(,!*!,(-! %,,(,!*!,(-! %,,(,!*!,(-!

A.)*"<C'$)'.>*;',

B2CD2?921! %-6()! *! %(+! -&(.!*!5(.!! ''(-!*!5(.! ''(-!*!5(.!

A.)"'+%*.)*&,

E0F2:;D4C! %,(.! *! ,(6! %,,(,!*!,(6! 5(%!*!,(6! -,(.!*!,(6!

A.)*7DE,

G21;9;>;10! -%(+! *! -(+! %,,(,!*!,()! %,,(,!*!,()! +)(5!*!,()!

F#+&*(%,F"#..'+,G+/&H'$>,

H;C9;230:! 5-('! *! ,(.! %,,(,!*!,(%! %,,(,!*!,(%! %,,(,!*!,(%!

I4?F0?2<2:;C! %'(.! *! ,(-! ,(,!*!%(&! .%(-!*!%(&! +()!*!%(&!

B0?2<2:;C! %&(5! *! ,(-! %,,(,!*!,(6! %,,(,!*!,(6! +,(.!*!,(6!

A.)*@*/)*&>,

=;<?4JC4A28;1! -.)&('! *! ))+(+! '+()!*!%(-! &%(,!*!%(-! 5&(6!*!%(-!

KLM! )+)%(5! *! %.-(&! ',(6!*!,('! &5(6!*!,('! 5%(6!*!,('!

73;9/?4:@8;1! 6+5(.! *! 5-(,! +'(&!*!,(&! +&(.!*!,(&! +)('!*!,(&!

NOM! %6'()! *! )(.! +6(,!*!,(&! +6(.!*!,(&! +)(.!*!,(&!

=C2?;9/?4:@8;1! .6(+! *! %(&! +6(+!*!,(-! %,,(,!*!,(-! 5)(5!*!,(-!

#GO! 5.()! *! '(6! +%(%!*!,(5! %,,(,!*!,(5! .'(.!*!,(5!

A.)*C+#)'+'),=$(4,

=C4<;>?4P0C! %%(%! *! ,(-! %,,(,!*!,(%! %,,(,!*!,(%! %,,(,!*!,(%!

F/.)$#>),%'=*(%,

Q4<?4:;>0! 5+,(6! *! 5-()! 5.(+!*!6(6!! %,,(,!*!6(6! %,,(,!*!6(6!

2*($')*&>,

RS#! 5,.(6! *! +(-! ++(%!*!%(%! -'(%!*!%(%! #,

LT?4D0:;>0! -6&(,! *! %,(,! .'(.!*!.(6! )5(5!*!.(6! .%(.!*!.(6!

!><&"*#)$*&,=$(4>,

=;92C4<?2:! )+6(5! *! %-(-! +%('!*!,(&! 5.(+!*!,(&! 5)(%*!,(&!

B01C2J2A;10! )--(%! *! .(.! &&('!*!,(-! 5('!*!,(-! #,

E4?230<2:! '5('! *! )(,! %,,(,!*!%(+! 55(,!*!%(+! -'(5!*!%(+!

=US! &&(+! *! )(%! 5+(,!*!,(5! #, #,

#?234>410! -5(%! *! %(-! %,,(,!*!,(5! %,,(,!*!,(5! %,,(,!*!,(5!

KC2132<;10! %5(-! *! %(&! %,,(,!*!,()! %,,(,!*!,()! .+(&!*!,()!

I/)#+J, %,V%6%(6! *! 6.5(%! !

3  removal  behaviours  Inoculated  cultures  led  to  lower  drug  concentra>on  (13  PhACs)  Inoculated  and  non-­‐inoculated  cultures  got  the  same  final  drug  concentra>on  (8  PhACs)  Non-­‐inoculated  cultures  led  to  lower  drug  concentra>on  (2  PhACs)  

Page 69: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Non-­‐spiked  bioslurry  at  Erlenmeyer  scale  

RESULTS  

!"#$%#&'(&)"#*+(#,%*-#,./012*

3#)&)(4*!"#$%#&'(&)"#*5*67*

-#,./012*

+%8"9(4*:)%4;<*-=2*!"#$%&'()*+,-()./&)0+

!"#$%&'()*+,1#"2-()./&)0+

1#"2/"#$%&'()*+,1#"2-()./&)0+

3+4+566+ !"!#$%& '& ()(*$)& !#$(& %)$+& ),$(&566+7+3+4+86+ )"($#& '& "*$-& **$(& !,$(& *,$(&

86+7+3+ ,*($!& '& (#$)& !"$!& -"$%& !"$(&9#('&+ -(!*$!& '& -##$%& !"$%& %%$-& )#$,&

Page 70: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Non-­‐spiked  bioslurry  

RESULTS  

Fungi  profile   Ini>al  >me:  two  main  fungal  species:  F3  &  F4  

 Final  >me:  microbial  diversity  of  the  mixture  increased  

 All  fungal  bands  (except  F5)  correspond  to  unknown  fungi  

Bacterial  profile   More  bands  at  15d  

Fungi                                            Bacteria  

Page 71: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Non-­‐spiked  bioslurry  at  reactor  scale  Once  it  was  proved  that  T.versicolor  could  

degrade  PPCPs  at  real  concentraPons  from  MBR  sludge  without  external  nutrients  and  under  non-­‐

sterile  condiPons…  The  aim  was  to  eliminate  drugs  from  MBR  sludge  at  reactor  scale  and  use  the  resul4ng  biosolids  as  substrate  of  an  Anaerobic  Diges4on  

RESULTS  

Page 72: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Bioreactor  Performance:  Fungus  ac4vity  

RESULTS  

 Evalua>on  of  the  fungus  state  through  the  laccase  ac>vity  

 Maximum:  14.5  U·∙L-­‐1  at  day  2  

 No  further  oxida>ve  poten>al  a{er  5d  

Non-­‐spiked  bioslurry  at  reactor  scale  

Page 73: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Bioreactor  Performance:  PPCPs  removal  

RESULTS  

Non-­‐spiked  bioslurry  at  reactor  scale  

Raw  MBR  sludge  

Fungal  bioslurry  (5d)  

Page 74: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Bioreactor  Performance:  PPCPs  removal  

RESULTS  

Non-­‐spiked  bioslurry  at  reactor  scale  

*  Removals  not  assesse  due  to  final  concentra>on  was  higher  than  ini>al    

Total  removal:  40.0%  

Page 75: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Anaerobic  Bach  Assays:  inoculum  screening    

RESULTS  

Non-­‐spiked  bioslurry  at  reactor  scale  

Terrassa   Sabadell  

Blanes  !"#$%&%'( )*+(,$$%'%&,+*-(

'*+.,"*(/'0(1234,(

5*+.,"#6*"7$(8$+797+:(;61<=123>6??@AB>-ABC(

;0123>6??@A

B>-ABC!!"##$%%$& !"#$%&%'"()% ("(()% ("((*(

'$($)"**& +","% ("-')% ("(#(%+*$,"%& -$-"*!%&%-*"!#% ("()!% ("(*-%

,(./+01+23,24/+%5,6718%&%82,+9,39%133/3%

Page 76: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Anaerobic  Bach  Assays:  BMP  test  Once  the  inoculums  from  Sabadell’s  and  Blanes’  ADs  were  chosen,  the  biogas  produc>on  of  the  fungal  bioslurry  was  evaluated  R

ESULTS  

Non-­‐spiked  bioslurry  at  reactor  scale  

Inoculum  +  fungal  

bioslurry  of  MBR  

Experimental   Inoculum  +  

fungal  biomass  

Fungal  Control  

Inoculum  +  fungal  

biomass  +  raw  MBR  sludge  

Sludge  Control  

VT:  1L  VW:  0.6L  

[VS]:  3gVS·∙L-­‐1  

Page 77: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

RESULTS  

Non-­‐spiked  bioslurry  at  reactor  scale  

Sabadell   Blanes  

Anaerobic  Bach  Assays:  BMP  test  

Fungal  controls  showed  the  higher  biogas  produc>ons  Sludge  controls  and  experimental  cultures  had  similar  net  biogas  produc>on  un>l  day  10  (sta>onary  phase)  Some  inhibitory  product  was  produced  during  the  fungal  bioslurry  

Page 78: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

RESULTS  

Non-­‐spiked  bioslurry  at  reactor  scale  

Anaerobic  Bach  Assays:  BMP  test             The  fungus  alone  (fungal  controls)  produced  high  

amounts  of  biogas   When  MBR  sludge  was  added  (sludge  controls)  the  

produc>on  decreased  (increasing  complexity  of  the  matrix)  

 The  biogas  produc>on  was  inhibited  or  slowed  with  the  biosolids  from  the  bioslurry  (experimental)  

Culture   Sabadell*   Blanes*  

Experimental   53.06  ±  8.32     61.71  ±  19.71  

Fungal  Control   289.51  ±  19.68     126.30  ±  0.00  

Sludge  Control   100.35  ±  4.16   87.08  ±  9.44    

*  Net  accumulated  biogas  (mL)  

Page 79: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Anaerobic  Bach  Assays:  Total  PPCPs  removal    PhACs  at  real  concentra>on  was  monitored  for  AD  

cultures  with  Blanes’  inoculum  in  order  to…    

Evaluate  if  AD  process  improved  the  removal  of  drugs  

RESULTS  

Non-­‐spiked  bioslurry  at  reactor  scale  

Page 80: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

Anaerobic  Bach  Assays:  Total  PPCPs  removal  

RESULTS  

Non-­‐spiked  bioslurry  at  reactor  scale  

!"#$"%&'!(&)*)+,-

!"&./&*0+*)"&-1&2345678!

9/#":+,-+;*/0-

8)"<,%00=-1>7.-

9/#":+,-1>7.!!"#$%&!$'()*+,$-$

./$ &01'()223$-$./$

"#$%&'()%*#! +,-+.!/!0-0,! 12-3!/!,-,! 00-4!/!,-,! +1-1!/!,-,-

5%)(%6%$#7'8#! 23-92!/!.-.9! 02-3!/!3-4- +- +!5:;7'<);=#:! 4-+.!/!3-33! ,33-3!/!3-3! +- ,33-3!/!3-,$5;<#'8#! 4>-33!/!.-.9! 10-4!/!3-0! +.-3!/!3-0! 14-,!/!3-0!?'%$#7%6! >3-4+!/!0-0,! 43-3!/!3-3- +- +!@;)%$#7%6! >+-19!/!0-0,! +3-+!/!,-+! 92-3!/!,-2! 19-3!/!,-2!AB#8%$;8#! 0,-9.!/!0-0,! +- +- +!A');C'D%6! 3! +- +- +!A)%E%F*%*'8! ,,3-1,!/!0-0,! 4>-2!/!0-.- +- ,0-,!/!0-.!GH:&%6#*B;C%$;:#! 12-22!/!9-90! .4->!/!3-1! 42-3!/!3-1! ,33-3!/!3-1!I;)%F#6'<#! +-3.!/!3-33! +! ,33-3!/!3-3! ,33-3!/!3-3!

!"#$%&'()"*$%+& ,-.-&/&-.0& ,1.,&/&-.2& 34.4&/&5.-&+!J#6;E%:!8;*!%FF#FF#<K!&'8%:!D;8D#8*)%*';8!L%F!B'=B#)!*B%8!*B#!'8'*'%:!

8!5;8D#8*)%*';8!E%:H#F!/!F*%8<%)<!<#E'%*';8F!.!M));)F!#C7)#FF#<!%F!*B#!<#*#D*';8!:'6'*!;&!#%DB!D;67;H8<!<'E'<#<!(N!0&

Page 81: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

REMOVAL  OF  PHARMACEUTICAL  PRODUCTS  IN  BIOSLURRY  SYSTEMS  

 The  low  solids  content  of  the  sludge  makes  difficult  to  assess  whether  the  solid  or  the  liquid  were  treated  

 MBR  sludge  can  be  treated  with  T.versicolor  at  laboratory  scale,  removing  a  wide  range  of  emerging  pollutants  

 The  fungus  has  grown  under  non-­‐sterile  condi>ons  without  any  extra  nutrients  

 Fungal  treatment  of  MBR  sludge  has  been  proved  as  an  adequate  pre-­‐treatment  prior  anaerobic  diges>on,  although  it  slowed  the  AD  process  

CONCLUSIONS  

Page 82: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Page 83: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

1.  Introduc>on  2.  Methodology  3.  Results  

 Substrate  Selec>on   Total  drugs  removal   Microbial  community  evolu>on  

Page 84: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Global  popula>on  increase  leads  to  a  growing  demand  of  water   Groundwater  is  an  important  natural  resource  that  can  be  use  to  supply  water  for  municipal,  agricultural,  and  industrial  purposes  

 Ar>ficial  recharge  methods  are  faster  than  natural  systems:  - Direct  aquifer  injec>on  systems:  to  put  water  directly  into  the  underground  water  basins    

-  Surface  spreading  recharge  systems:  to  replenish  aquifers  by  infiltra>on  

INTRODUCTION  

Page 85: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Soil-­‐Aquifer  Treatment  (SAT)  Surface   spreading:   reclaimed   wastewater   is  intermiaently  introduced  into  spreading  basins   Water   percolates   across   the   ground   and  throughout  the  aquifer  

 Water   quality   improvement   thanks   to  physical,   chemical,   and   biological   natural  processes  

INTRODUCTION  

Page 86: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Soil-­‐Aquifer  Treatment  (SAT)  

INTRODUCTION  

Miotlinski  et  al.  2010  

Page 87: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

INTRODUCTION  

!

Alice  Springs  SAT   Arid   Zone   Research   Ins>tute   (Alice   Springs,  NT,  Australia)  

 Aquifer  recharge:  600ML·∙y-­‐1  

 Recharge  area:  10,269m3  (5  basins)   Infiltra>on  rate:  240mm·∙d-­‐1  

Page 88: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Adsorp4on  of  pollutants  The  mass  transfer  of  a  substance  from  a  liquid  to  a  solid’s  surface   Ac>vated  carbon  is  the  universal  adsorbent,  but  it  is  expensive  

 Local  materials  u>lized  as  inexpensive  sorbents:  Low-­‐cost  sorbents  (low  processing  &  abundant)  - NUA:   neutralised   used   acid   from   heavy   mineral  processing  

- BIOCHAR:   charcoal   produced   by   the   pyrolysis   of  biomass  (eucalyptus)  

INTRODUCTION  

Page 89: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Aim…    

Determine  if  it  was  possible  to  treat  a  WWTP  effluent  with  low-­‐cost  sorbents  in  order  to  use  

it  in  a  soil-­‐aquifer  treatment  

INTRODUCTION  

Page 90: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

METHODOLOGY  

Soil’s  adsorp>on  capacity  

Amendment  ra>o  

Removal  of  PPCPs  

PhACs  adsorpNon  

24  hours  

Soil:  amendment  

raNo  

Adsorp>on    

24  hours  

Spiked  drugs  removal  

Adsorp>on    

21  days  

Page 91: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Soils  adsorp4on  capacity  &  Soil:amendment  ra4o  

METHODOLOGY  

Soil  from  Alice  Springs’  SAT  (basin  E)  

0.1M  CaCl2  

10rpm  12h  

PhACs  10rpm  /  24h  

PhACs  quan>fica>on  

Adsorp>on  

NUA  

Biochar  

Ra4os:  0.1,  0.5,  1,  2  &  5%    w/w  

Triplicates  &  

Sta>s>c  analysis  

Page 92: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Removal  in  amended  soils  

METHODOLOGY  

Soil  from  Alice  Springs’  SAT  (basin  E)  

0.1M  CaCl2  

10rpm  12h  

PhACs  21d  

PhACs  quan>fica>on  

Removal  

NUA  

Biochar  

1%    w/w  

Triplicates  &  

Sta>s>c  analysis  

Page 93: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Soil’s  adsorp4on  Determine  soil’s  natural  adsorp4on  capacity  of  PPCPs  under  experimental  condi>ons   Spiked  drugs  selected  according  to  reclaimed  wastewater  characterisa>on  studies:    Ibuprofen            Carbamazipine    Sulfamethoxazole      Propranolol    Ketoprofen          Trimethoprim    Ofloxacin  

RESULTS  

Page 94: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Soil’s  adsorp4on   Kd:  equilibrium  constant  isoterm  of  adsorp>on    

- Linear  rela>onship  between  sorbed  &  non-­‐sorbed  spices  

- Aaenua>on  mechanisms  &  environmental  factors  are  considered  

RESULTS  

Page 95: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Soil’s  adsorp4on  

RESULTS  

Compound   Kd  (mL·∙g-­‐1)  ±  SD    

Ketoprofen   1.21  ±  0.03  

Ibuprofen   4.24  ±  0.02  

Carbamazepine   2.25  ±  0.05  

Sulfamethoxazole   4.38  ±  0.03  

Propranolol   22.88  ±  0.01  

Trimethoprim   14.46  ±  0.02  

Ofloxacin   2487.9  ±  0.4  

Page 96: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Selec4on  of  the  amendment  ra4o  Once  the  natural  adsorpPon  of  the  soil  was  

determined…  Removal  of  PPCPs  was  studied  for  both  Biochar  and  NUA,  in  order  to  establish  the  best  ra4o  of  soil:amendment  

 

 Ra>os:  0.1,  0.5,  1,  2  &  5  %   Three  PhACs:  Sulfamethoxazole,  propranolol  &  trimethoprim  

RESULTS  

Page 97: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

RESULTS  

Trimethoprim    

RaNo  (%)   NUA  +  Sand   NUA  +  Soil   Biochar  +  Sand   Biochar  +  Soil  

0.1   2.92  ±  0.44   13.42  ±  0.35   0   3.12  ±  0.17  

0.5   *   10.37  ±  0.33   *   1.31  ±  0.58  

1   0.37  ±  0.30   13.42  ±  0.23   0   2.09  ±  0.11  

2   0.88  ±  0.39   9.45  ±  0.09   0.43  ±  0.32   1.46  ±  0.49  

5   0.48  ±  0.21   11.60  ±  0.03   *   1.83  ±  0.10  *Kd  value  not  assessed,  measured  concentra>on  was  higher  than  the  ini>al  

[mL·∙g-­‐1]  (±  standard  error)    

Selec4on  of  the  amendment  ra4o  

Page 98: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

RESULTS  

Propranolol  

RaNo  (%)   NUA  +  Sand   NUA  +  Soil   Biochar  +  Sand   Biochar  +  Soil  

0.1   2.69  ±  0.04   18.44  ±  0.12   8.74  ±  0.30   14.06  ±  0.27  

0.5   5.23  ±  0.04   18.38  ±  0.03   11.48  ±  1.02   24.52  ±  0.27  

1   3.76  ±  0.29   17.53  ±  0.04   17.11  ±  0.04   15.81  ±  0.07  

2   5.47  ±  0.13   17.68  ±  0.10   39.39  ±  0.13   28.54  ±  0.14  

5   9.59  ±  0.29   40.17  ±  0.04   39.81  ±  0.31   33.42  ±  0.07  

[mL·∙g-­‐1]  (±  standard  error)    

Selec4on  of  the  amendment  ra4o  

Page 99: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

RESULTS  

Sulfamethoxazole  

RaNo  (%)   NUA  +  Sand   NUA  +  Soil   Biochar  +  Sand   Biochar  +  Soil  

0.1   *   4.83  ±  0.09   34.70  ±  0.08   29.62  ±  0.02  

0.5   *   3.76  ±  0.07   36.97  ±  0.00   35.80  ±  0.01  

1   *   4.53  ±  0.00   38.85  ±  0.04   44.88  ±  0.03  

2   *   4.63  ±  0.04   56.30  ±  0.04   68.35  ±  0.04  

5   0   4.55  ±  0.04   181.74  ±  0.14   181.04  ±  0.14  *Kd  value  not  assessed,  measured  concentra>on  was  higher  than  the  ini>al  

[mL·∙g-­‐1]  (±  standard  error)    

Selec4on  of  the  amendment  ra4o  

Page 100: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Selec4on  of  the  amendment  ra4o   Propranolol  and  trimethoprim  beaer  removed  with  biochar  

 Sulfamethoxazole  beaer  removed  with  NUA   Ra>o  of  1%  selected  for  further  experiments:  - All  the  tested  compounds  were  well  retained  - Higher  ra>o    Higher  opera>onal  costs    

RESULTS  

Page 101: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Removal  of  PhACs  from  amended  soil  Once  the  amendment  raPo  was  selected…  

The  removal  capacity  of  amended  soil  with  biochar  and  NUA  at  1%  was  determined   Selected  PhACs:  

 Ofloxacin            Carbamazipine    Sulfamethoxazole      Propranolol    Ketoprofen          Trimethoprim    Ibuprofen  

RESULTS  

Constant  fluctuaNons  with  high  errors  

Page 102: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Removal  of  PhACs  from  amended  soil  

RESULTS  

Plots  a:  Biochar      Soil  Plots  b:  NUA        Sand  

90.7%   77.7%   80.1%   77.8%  

Page 103: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Removal  of  PhACs  from  amended  soil  

RESULTS  

Plots  a:  Biochar      Soil  Plots  b:  NUA        Sand  

100%   100%   97.6%   85.6%  

Page 104: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Removal  of  PhACs  from  amended  soil  

RESULTS  

Plots  a:  Biochar      Soil  Plots  b:  NUA        Sand  

97.4%   91.4%  

51.1%   51.7%  

32.5%   30.6%  

Page 105: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

Removal  of  PhACs  from  amended  soil  In  general,  higher  removals  with  biochar,  but  no  sta>s>cal  differences  with  NUA  

Biochar:  86.2%  NUA:  80.7%  

 Removal  order    - Biochar:  OFX  >  TRM  =  PRN  >  CBZ  >  KTP  >  SMX  - NUA:  OFX  >  TRM  >  PRN    >  CBZ  =  KTP  >  SMX  

RESULTS  

Page 106: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!POST-­‐TREATMENT  OF  WWTP  EFFLUENT  

 Soil  could  not  adsorb  the  total  amount  of  PhACs    

 High  removal  rates  for  both  NUA  and  biochar  as  amendments  a{er  21d  of  treatment  

 A  ra>o  of  1%  (w/w)  of  amendment  was  enough  to  remove  the  selected  compounds  

CONCLUSIONS  

Page 107: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!

CONCLUDING  REMARKS  

Page 108: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!CONCLUDING  REMARKS  

It  has  been  seen  that…   Fungal   biopiles   can   be   made   of   forestry   by-­‐products  to  treat  thermal  dried  sludge,  with  the  fungus  surviving  more  than  22d  and  accelera>ng  the  switch  of  the  microbial  popula>on  

 MBR  sludge  can  be  treated  in  a  fungal  bioslurry  system,   and   the   resul>ng   biomass   can   be  energe>cally  valorised  

 Low-­‐cost   sorbents   can   be   applyed   into   soil   in  order  to  treat  reclaimed  water  as  part  of  a  soil-­‐aquifer  treatment  

Page 109: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!CONCLUDING  REMARKS  

It  has  been  demonstrated  that…   Different  WWTP’s  streams  can  be  biologically  and   physically   treated   in   order   to   remove  PhACs  

 Fungal   mediated   systems,   both   liquid   and  solid,  enhanced  the  removal  of  PhACs  

 Low-­‐cost   sorbents   can   improve   the   final  effluent  of  a  WWTP  by  removing  PhACs  

Page 110: Removal of pharmaceuticals from WWTP streams by biological and physical processes

!CONCLUDING  REMARKS  

Further  research  should  be  done  in  order  to…   Increase  the  scale  of  the  biopiles   Select   another   sludge   (rather   than   MBR  sludge)  

 Study   the   PPCPs   adsorp>on   in   con>nuous  mode  and  with  real  reclaimed  water  

 Search   new   ways   to   valorise   the   biomass  from  the  bioremedia>on  processess    

 Establish   the   environmental   an   economical  feasibility  of  the  treatments  

Page 111: Removal of pharmaceuticals from WWTP streams by biological and physical processes

REMOVAL OF PHARMACEUTICALS FROM WWTP STREAMS BY BIOLOGICAL AND PHYSICAL

PROCESSES  

Thanks  for  your  aaen>on!