64
Mechanics of structures Mechanics of structures Stresses in beams Stresses in beams, Inelastic bending, Deflections Dr. Rajesh K. N. Assistant Professor in Civil Engineering Assistant Professor in Civil Engineering Govt. College of Engineering, Kannur 1

Mechanics of structures - module3

Embed Size (px)

DESCRIPTION

GCE Kannur

Citation preview

Page 1: Mechanics of structures - module3

Mechanics of structuresMechanics of structures

Stresses in beams Stresses in beams, Inelastic bending,

Deflections

Dr. Rajesh K. N.Assistant Professor in Civil EngineeringAssistant Professor in Civil EngineeringGovt. College of Engineering, Kannur

1

Page 2: Mechanics of structures - module3

Module III

Bending stresses in beams - shear flow - shearing stress formulae for

Module III

Bending stresses in beams shear flow shearing stress formulae for beams –

Inelastic bending of beams –Inelastic bending of beams –

Deflection of beams - direct integration method - singularity f ti iti t h i t th d functions - superposition techniques - moment area method -conjugate beam ideas –

Elementary treatment of statically indeterminate beams - fixed and continuous beams

Dept. of CE, GCE Kannur Dr.RajeshKN

2

Page 3: Mechanics of structures - module3

Important assumptions in the theory of simple bending

• Material of the beam is homogeneous and isotropic

p p y p g

• The stress is proportional to strain and stress is within elastic limit

• Modulus of elasticity is same for tension and compression• Modulus of elasticity is same for tension and compression

• Plane vertical sections remain plane after bending

• Loads are applied in the plane of bending

• Cross section is symmetrical about vertical axis

Dept. of CE, GCE Kannur Dr.RajeshKN

3

Page 4: Mechanics of structures - module3

Theory of simple bending

r syp q

O

θ p q Rθ′ ′ =

( )r s R y θ′ ′ = −R ( )r s R y θ= −

p q pq′ ′ =

r’ s’

p’ q’y

p q pq

Dept. of CE, GCE Kannur Dr.RajeshKN

4

p q

Page 5: Mechanics of structures - module3

Strain for the fibre rs

rs r s p q r srs rs′ ′ ′ ′ ′ ′− −

=( )R R y yR R

θ θθ

− −= =

rs rs R Rθ

yσ=

Eyσ =If σ is the stress in fibre rs, and E is the Young’s modulus, strain

E R RE is the Young s modulus, strain

O l f

. .EydA dAR

σ =

On any cross section, normal force on an elemental area dA,

dAR

Moment about NA due to normal force on dA, yNA2

. . .EydA y dAR

σ =

Sum of all such elemental moments is the

NA

Dept. of CE, GCE Kannur Dr.RajeshKN

5

Sum of all such elemental moments is the moment of resistance of the cross section.

Page 6: Mechanics of structures - module3

Moment of resistance balances the bending moment at the cross section.g

2

. . .RA A

EyM M dA y dAR

σ= = =∫ ∫2.

A

EM y dAR

= ∫

2.A

y dA∫ is the moment of inertia of the cross section about the neutral axis

EIMR

∴ = M EI R y

σ= = Bending equationR I R y

Dept. of CE, GCE Kannur Dr.RajeshKN

6

Page 7: Mechanics of structures - module3

Myσ Along a cross section, variation of bending stress is I

σ =

For a beam with transverse downward loading, compressive force

g , glinear.

g, pacts above NA, tensile force acts below NA

C

T

MMTotal compressive force = Total tensile force

Dept. of CE, GCE Kannur Dr.RajeshKN

7

Page 8: Mechanics of structures - module3

C dA

NA

y

T

0 . . 0C T dA dAσ σ+ = ⇒ + =∫ ∫

Total force on the cross section is zero

. 0dAσ =∫1 2A A∫ ∫

0 0MydA dA∫ ∫ ∫

A∫

. 0 . 0A A

ydA dAI

σ = ⇒ =∫ ∫ .A

y dA

dA

Distance from a point to the centroidal axis

. 0A

y dA⇒ =∫ A

dA∫ the centroidal axis

Dept. of CE, GCE Kannur Dr.RajeshKN

8i.e., NA coincides with the centroidal axis

Page 9: Mechanics of structures - module3

Section Modulus

( )MI y

σ =

MmaxZ I y=

Section modulus for various shapes of cross section

maxMZ

σ =Section modulus

b

( )3 212bdI bdd

( )( )

2

max

122 6

bdI bdZy d

= = =

d ( )4 3642 32

d dZd

π π= =

Dept. of CE, GCE Kannur Dr.RajeshKN

9

Page 10: Mechanics of structures - module3

B

( )( )

3 33 3

112

2 6

BD bdI BD bdZD D

− −= = =

b

( )max 2 6y D DD d

( ) ( )4 4 4 464

2 32

D d D dZ

D D

ππ− −

= =2 32D D

Dept. of CE, GCE Kannur Dr.RajeshKN

10

Page 11: Mechanics of structures - module3

2h3

CG axis h

b

3bh⎛ ⎞⎜ ⎟ 2

max

362 243

bhZ I y h

⎜ ⎟⎝ ⎠= = =

Dept. of CE, GCE Kannur Dr.RajeshKN

11

Page 12: Mechanics of structures - module3

Problem 1. A beam 500mm deep of symmetrical rectangulary gsection has I = 1x108 mm4 and is simply supported over a spanof 10 m. If the beam carries a central point load of 25 kN,calculate the bending stress at 100 mm above neutral axis andcalculate the bending stress at 100 mm above neutral axis andthe maximum bending stress on the beam.

Myσ8 41 10 mmI = × 100 mmy =y

Iσ =

25 10 62 5 kNWLM ×

1 10 mmI = × 100 mmy

6262.5 10 100 62 5 N/× ×

∴62.5 kNm4 4

M = = = 28 62.5 N/mm

1 10σ∴ = =

×

maxmax

MyI

σ =max

500 250 mm2

y = =

62

max 8

62.5 10 250 156.25 N/mm1 10

σ × ×∴ = =

Dept. of CE, GCE Kannur Dr.RajeshKN

12

max 81 10×

Page 13: Mechanics of structures - module3

Problem 2. For the above problem, calculate the UDL it mayycarry, if the maximum bending stress is not to exceed 150N/mm2.

IIM

= max

.allowR

IMy

σ=Moment of resistance

2150 N mmallowσ = max 250 mmy =

8 41 10 mmI = ×

86150 1 10 60 10 Nmm 60 kNm

250RM × ×∴ = = × =

2. 60 kNm

8alloww l

= . 2

60 8 4.8 kN/m10alloww ×

∴ = =

Dept. of CE, GCE Kannur Dr.RajeshKN

13

Page 14: Mechanics of structures - module3

Problem 3. Find the maximum BM that should be imposed onhi i f il if h il i h fl ithis section of a cantilever, if the tensile stress in the top flange is

not to exceed 40 MPa. What is then the value of compressivestress in the bottom flange?stress in the bottom flange?

200 40 260 200 40 140 120 40 20y × × + × × + × ×=

200 mm

200 40 200 40 120 40y =

× + × + ×

158.5 mm=

i.e., 158.5 mmcy =

3 3200 40 40 200

280 158.5 121.5 mmty∴ = − =

( ) ( )

( )

3 32 2

32

200 40 40 200200 40 121.5 20 40 200 158.5 14012 12

120 40 120 40 158.5 20

I × ×= + × × − + + × × − +

×+ + × × −

Dept. of CE, GCE Kannur Dr.RajeshKN

14

( )120 40 158.5 2012

+ + × ×8 42.056 10 mmI = ×

Page 15: Mechanics of structures - module3

.ll Iσ 2 8 440 N/mm 2.056 10 mm× ×

,max

.allow

t

IMyσ

=Max. BM 121.5 mm=

667.6 10 Nmm= × 67.6 kNm=

MyCompressive stress in the bottom flange ,maxcc

MyI

σ =

667.6 10 Nmm 158.5 mm× × 28 4

67.6 10 Nmm 158.5 mm2.056 10 mmcσ =

×252.19 N mm=

240 N mmtσ =t

40 158.5σ ×=

Alternatively,

121.

5 m

m

NA121.5cσ =

252.19 N mm=

158

.5 m

m

Dept. of CE, GCE Kannur Dr.RajeshKN

15252.19 N mmcσ =

1

Page 16: Mechanics of structures - module3

Theory of simple bending is applicable to pure bending. y g g

But since the effect of shear on bending stress is negligible, the theory can be applied generally

The effect of shear on bending stress is not of practical

theory can be applied generally.

The effect of shear on bending stress is not of practical importance, but shearing stresses must be considered for their own importance.

Dept. of CE, GCE Kannur Dr.RajeshKN

16

Page 17: Mechanics of structures - module3

Shear stresses in bending Myσ c Iσ =

( )d

M dM yσ

+=

p’ q’p’ q’

c d d Iσ

m ny1M M dM+

yc m ny1 y

c d

M dM+

p qdx

p q

. .c cy y

cMydA dAI

σ =∫ ∫( ). .

c cy y

d

M dM ydA dA

+=∫ ∫

Dept. of CE, GCE Kannur Dr.RajeshKN

17

1 1y y I1 1y y I

Page 18: Mechanics of structures - module3

c cy y

dA dAσ σ−∫ ∫ ( )c cy yM dM y MydA dA+

∫ ∫cy dM y dA= ∫

1 1

. .d cy y

dA dAσ σ∫ ∫ ( )1 1

. .y y

dA dAI I

= −∫ ∫1

.y

y dAI∫

.cy

dAσ∫

Acy

dAσ∫1

.cy

dAσ∫b

d

1

.dy

dAσ∫. .b dxτ

NAdx NA

cy dM 1 cydM d M

1

. . .y

dMb dx y dAI

τ = ∫1

1 .y

dM y dAIb dx

τ = ∫cyV

d M Vd x

=

( )V A

Dept. of CE, GCE Kannur Dr.RajeshKN

181

.y

V y dAIb

τ = ∫ ( )V AyIb

τ =

Page 19: Mechanics of structures - module3

Shear stress distribution Rectangular sectionShear stress distribution – Rectangular section

( )V Ayτ =

b IbA

1d dAy b y y y⎡ ⎤⎛ ⎞ ⎛ ⎞= − × + −⎜ ⎟ ⎜ ⎟⎢ ⎥d y

y 2 2 2Ay b y y y= − × + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

1V d d⎛ ⎞ ⎛ ⎞2

2V d⎛ ⎞

maxτ

12 2 2

V d db y yIb

τ ⎛ ⎞ ⎛ ⎞= − × +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2

2 4V d yI⎛ ⎞

= −⎜ ⎟⎝ ⎠

Hence, variation of shear stress over the cross section is parabolic2 2

0V d dτ⎛ ⎞⎜ ⎟2 0

2 4 4y d Iτ =± = − =⎜ ⎟

⎝ ⎠

2 2 3V d Vd V⎛ ⎞ 3

Dept. of CE, GCE Kannur Dr.RajeshKN

19( )max 0 3

32 4 28 12yV d Vd VI bdbd

τ τ =

⎛ ⎞= = = =⎜ ⎟

⎝ ⎠

32 meanτ=

Page 20: Mechanics of structures - module3

Shear stress distribution I sectionShear stress distribution – I section

( )V Ayτ =

B

Shear stress in flangesIb

12 2 2D DAy B y y y⎡ ⎤⎛ ⎞ ⎛ ⎞= − × + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

D d b

g

2 2 2⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

1V D DB y yτ ⎛ ⎞ ⎛ ⎞= − × +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

22

2 4V D yI⎛ ⎞

= −⎜ ⎟⎝ ⎠2 2 2

yB

yI ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ 2 4y

I ⎜ ⎟⎝ ⎠

Hence, variation of shear stress over the flange is parabolic

2 2

2 02 4 4y DV D DI

τ =±

⎛ ⎞= − =⎜ ⎟

⎝ ⎠

y

2 2 4 4y D I=± ⎜ ⎟⎝ ⎠

( )2 2

2 2V D d V D dτ⎛ ⎞

= − = −⎜ ⎟

Dept. of CE, GCE Kannur Dr.RajeshKN

20

( )/2 2 4 4 8y d D dI I

τ = = =⎜ ⎟⎝ ⎠

Page 21: Mechanics of structures - module3

( )V Ayτ =Shear stress in web

Ib

( ) ( ) 12 4 2 2 2

D d D d d dAy B b y y− + ⎛ ⎞ ⎛ ⎞= + × − × +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠y

2 4 2 2 2⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

( ) ( ) 12 4 2 2 2

D d D dV d db y yIb

Bτ− +⎡ ⎤⎛ ⎞ ⎛ ⎞= + × − × +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦2 4 2 2 2

y yIb ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

( ) ( )2 2 2 248V B D d

bb d y

Iτ ⎡ ⎤= − + −⎣ ⎦

Hence, variation of shear stress over the web is parabolic

( ) ( ) ( )2 2 2 2 2 2V VB⎡ ⎤

( ) ( )8 bI ⎣ ⎦

( ) ( ) ( )2 2 2 2 2 22 8 8y d

V VBB D d b db

d D dI bI

τ =±⎡ ⎤= − + − = −⎣ ⎦

( )2 2 2V ⎡ ⎤

Dept. of CE, GCE Kannur Dr.RajeshKN

21

( )2 2 2max 0 8y

V B dIb

D bdτ τ =⎡ ⎤= = − +⎣ ⎦

Page 22: Mechanics of structures - module3

maxτ

Shear stress distribution

Dept. of CE, GCE Kannur Dr.RajeshKN

22

Page 23: Mechanics of structures - module3

Shear stress distribution – Circular section( )V AyIb

τ =R

y

Rb

dy2 22b R y= −

( )2 2 24b R y= −. .

y R

Ay b dy y=

= ∫y ( )4b R y= −

2 . 8 .b db y dy= −1

y y=

1. .4

y dy b db= −

When ,y y b b= =When , 0y R b= =0 1 .

4

b

b b

Ay b b db=

=

⎛ ⎞∴ = −⎜ ⎟⎝ ⎠∫

0 321 .

4 12

b

b b

bb db=

=

= − =∫

3 2V b Vbτ⎛ ⎞

= =⎜ ⎟( ) ( )2 2 2 24V R y V R y× − −

= =

b b b b

Dept. of CE, GCE Kannur Dr.RajeshKN

23

12 12Ib Iτ = =⎜ ⎟

⎝ ⎠ 12 3I I

Page 24: Mechanics of structures - module3

Hence variation of shear stress over the cross section is parabolicHence, variation of shear stress over the cross section is parabolic

( )2 2

0V R R

τ−

= =m a xτ

03y R I

τ = = =

2VR 2 4 4 4VD V Vmax 0 3y

VI

τ τ == = 4 23 3 31264 4

meanV V V

AreaD Dτ

π π= = = =

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Dept. of CE, GCE Kannur Dr.RajeshKN

24

Page 25: Mechanics of structures - module3

Find shear stress distribution for the sections shown below:Find shear stress distribution for the sections shown below:

Dept. of CE, GCE Kannur Dr.RajeshKN

25

Page 26: Mechanics of structures - module3

Inelastic Bending of Beams(Plastic Analysis)

g

ress

str

strainOIdealised stress-strain curve of elastic-plastic materialp

AssumptionsAssumptions

• Plane sections remain plane in plastic conditionS i l i i id i l b h i i d i

Dept. of CE, GCE Kannur Dr.RajeshKN

• Stress-strain relation is identical both in compression and tension

Page 27: Mechanics of structures - module3

• Let M at a cross-section increases gradually.

• Within elastic limit, M = σ.ZZ i ti d l I/ • Z is section modulus, I/y

• Elastic limit – yield stresses reached Elastic limit yield stresses reached My = σy.Z

• When moment is increased, yield spreads into inner fibres. Remaining portion still elastic

• Finally, the entire cross-section yields, at a moment of MP

Page 28: Mechanics of structures - module3

yσσ

σyσ

yσ yσyσσ

σ

Dept. of CE, GCE Kannur Dr.RajeshKN

yσ yσ yσσ

Page 29: Mechanics of structures - module3

σy σy σy σyσy σy y y

σyσy

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 30: Mechanics of structures - module3

Plastic moment• M – Moment corresponding to working load

• My – Moment at which the section yieldsMy Moment at which the section yields

• MP – Moment at which entire section is under yield stress – plastic moment

CC

T

yσMP

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 31: Mechanics of structures - module3

• At plastic moment the entire section is under yield stressAt plastic moment, the entire section is under yield stress

C TA Aσ σ=

=AA A⇒ = =

•NA divides cross-section into 2 equal parts

c y t yA Aσ σ=2c tA A⇒ = =

AC T σ= =•NA divides cross-section into 2 equal parts2 yC T σ= =

y2 yAC = σ

yt

yc

AT σ=

2 yT σ

Dept. of CE, GCE Kannur Dr.RajeshKN31

Page 32: Mechanics of structures - module3

ZσSimilar to

•Couple due to ( )A A Z⎛ ⎞⎜ ⎟

Plastic modulus

yZσ•Couple due to ( )2 2y y c t y py y Zσ σ σ⎛ ⎞ = + =⎜ ⎟

⎝ ⎠

Plastic modulus

Shape factor ( )1pZZ

= > b

Rectangular cross-section:

p ( )Z b

Section modulus ( )( )

3 2122 6

bdI bdZy d

= = =d

( )y

( )2A bd d d bdZ y y ⎛ ⎞+ +⎜ ⎟Plastic modulus ( )

2 2 4 4 4p c tZ y y= + = + =⎜ ⎟⎝ ⎠

Plastic modulus

Dept. of CE, GCE Kannur Dr.RajeshKN

Shape factor 1.5pZZ

= =

Page 33: Mechanics of structures - module3

Shape factor for circular section

d( )2p c tAZ y y= +

2 32 28 3 3 6d d d d⎛ ⎞⎛ ⎞= + =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

ππ π

1 7pZS∴ = =( )4 364d dZ

π π

⎝ ⎠⎝ ⎠

1.7SZ

∴ = =( )2 32

Zd

= =

Sh f t f t i ul ti

2h

Shape factor for triangular section

( )2p c tAZ y y= +

hEqual area axis

cy

23h

3bh⎛ ⎞⎜ ⎟

( )2p c t

Equal area axistyCG axis

2362 243

bhZ h

⎜ ⎟⎝ ⎠= =

Dept. of CE, GCE Kannur Dr.RajeshKN

bS = 2.346

Page 34: Mechanics of structures - module3

20mmShape factor for I section

10mm250mm

p

20mm200mm

S = 1.132

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 35: Mechanics of structures - module3

Z

Load factor

P y Pcollapse load MLoad factorworking load M Z

Zσσ

= = =

Factor of safety and load factor

Yield LoadFactor of Safety= =Working Load

Yield Stress

yWWσ

Elastic Analysis : Factor of Safety

Pl i A l i L d FYield Stress= =Working Stress

yσσ

Plastic Analysis : Load Factor

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 36: Mechanics of structures - module3

Plastic moment capacity of a rectangular cross-section:

2

P PbdM Zσ σ= =

2

4pbdZ =Plastic modulus Hence, plastic

t it 4P y P yM Zσ σmoment capacity

2 2

6 1.5 6ybd bdM Z

σσ σ= = =

Elastic moment capacitywith a factor of safety of 1.5

2

2

9 2.254P y P

M bdM Z Mbd

σ= = =2

9y

Mbd

σ∴ = Hence,4bdbd

2 2bd bd Elastic moment capacity

6 6ybd bdM Zσ σ σ= = =

p ywith a factor of safety of 1.0

26 bd6M

Dept. of CE, GCE Kannur Dr.RajeshKN36

2

2

6 1.54P y P

M bdM Z Mbd

σ= = =2

6y

Mbd

σ∴ = Hence,

Page 37: Mechanics of structures - module3

Plastic hinge

• When the section is completely yielded, the section is fully plastic• A fully plastic section behaves like a hinge – Plastic hinge

Plastic hinge is defined as an yielded zone due to bending in a structural member, at which large rotations can occur at a section

at constant plastic moment, MP

Mechanical hinge Plastic hinge

Mechanical hinge and Plastic hinge

Mechanical hinge Resists zero moment

Plastic hinge Resists a constant moment MP

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 38: Mechanics of structures - module3

Mechanism of failure in a simple beamp

D t i t b & Determinate beams & frames: Collapse after first plastic hinge

Simple beam

MPM

.uW lMEquilibrium4u

PM =

4M

Equilibrium:

8 PM

Dept. of CE, GCE Kannur Dr.RajeshKN38

4 Pu

MWl

∴ = 2P

uwl

∴ =If UDL,

Page 39: Mechanics of structures - module3

fl i f bDeflection of beams

• Differential equation of the elastic curve

• Slope and deflection of beams by method of successive integration

• Macaulay’s method

• Moment area method

• Conjugate beam method

Dept. of CE, GCE Kannur Dr.RajeshKN

39

Page 40: Mechanics of structures - module3

Differential equation of the elastic curveDifferential equation of the elastic curve

yy

ds Rdα=

2 2

q

Rdα

ds

2 2ds dx dy= +

tan dyα =p

dy

dx

ds adx

α

22sec d d yαα

α α+dα

x

2secdx dx

α =

x

( )2

221 tan d yd dx

dxα α+ =

Dept. of CE, GCE Kannur Dr.RajeshKN

40

Page 41: Mechanics of structures - module3

2 2dy d y⎧ ⎫⎪ ⎪⎛ ⎞

2

2d y dxdx

21 dy d yd dxdx dx

α⎧ ⎫⎪ ⎪⎛ ⎞+ =⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭2

1

dxddydx

α =⎛ ⎞+ ⎜ ⎟⎝ ⎠

2

22 22

d yR dxdxds Rd dx dy

dα= ⇒ + =

⎛ ⎞

2

22

21

d yR dxdy dxdxd

⎛ ⎞+ =⎜ ⎟⎝ ⎠ ⎛ ⎞

2

1 dydx

⎛ ⎞+ ⎜ ⎟⎝ ⎠

2

1dx dy

dx

⎜ ⎟⎝ ⎠ ⎛ ⎞+ ⎜ ⎟

⎝ ⎠2d 2

2

32 2

1

1

d ydx

R dy=⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟

2

2

1 d yR d=

1 dydx

⎛ ⎞+⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

2R dx

21M E M d 2d2

2

1M E M d yI R EI R dx= ⇒ = =

2

2

d yM EIdx

=

I th b d i ti ff t f h d fl ti i NOT

Dept. of CE, GCE Kannur Dr.RajeshKN

41

•In the above derivation, effect of shear on deflection is NOTtaken into account, since it is assumed to be very small.

Page 42: Mechanics of structures - module3

Method of successive integrationsMethod of successive integrations2d 2

2

d yM EIdx

=2

2

d yEI Mdx

=

2d yEI M C= +∫ ∫ dyEI M C x C= + +∫ ∫ ∫12EI M Cdx

dyEI M C

= +

= +

∫ ∫

1 2

1 2

EI M C x Cdx

EIy M C x C

= + +

= + +

∫ ∫ ∫

∫ ∫

{ }1

1

EI M Cdx

dy M C

= +

= +

∫ { }1 2

1 21

y

y M C x CEI

= + +

∫ ∫

∫ ∫{ }1M Cdx EI

= +∫ { }EI ∫ ∫

42

Page 43: Mechanics of structures - module3

Slope at B of the deflected beam = (dy/dx) at B

( )2

2

d yEI M P l x= = − −l B

Deflection at B = y at B

0 0 0dyAt x C= = ∴ =

( )2dx

2dy Px

lx

10, 0 0At x Cdx

= = ∴ =12

dy PxEI Plx Cdx

= − + +

2 3

22 6Plx PxEIy C−

= + +2

2dy PxEI Plxdx

= − + 2 62dx

2 3Plx Px−20, 0 0At x y C= = ∴ = 2 6

Plx PxEIy∴ = +

Dept. of CE, GCE Kannur Dr.RajeshKN

43

Page 44: Mechanics of structures - module3

2 2

,2 2

dy Px dy PlAt x l EI Plxdx dx EI

= = − + ∴ = −2 2x ldx dx EI

=

2 3Plx Px−

3

,2 6 x l

Plx PxAt x l EIy=

= ∴ = +

3

3PlyEI

∴ = −

If when x increases, y also increases, then slope (dy/dx) is +ve.

If when x increases, y decreases, then slope (dy/dx) is -ve.

Dept. of CE, GCE Kannur Dr.RajeshKN

44

Page 45: Mechanics of structures - module3

Slope at B of the deflected beam = (dy/dx) at B

Deflection at B = y at B

( )22 w l xd yEI M−

= = −lB

d

2 2EI M

dx= = −l

x

10, 0 0dyAt x Cdx

= = ∴ =3

2 212 3

dy w xEI l x lx Cdx

⎛ ⎞= − − + +⎜ ⎟

⎝ ⎠

32 2

2 3dy w xEI l x lxdx

⎛ ⎞∴ = − − +⎜ ⎟

⎝ ⎠

2 2 3 4

2 2 3 12w l x lx xEIy⎛ ⎞

= − − +⎜ ⎟⎝ ⎠2 3dx ⎝ ⎠ ⎝ ⎠

2 2 3 4w l x lx x⎛ ⎞20, 0 0At x y C= = ∴ = 2 2 3 12

w l x lx xEIy⎛ ⎞

∴ = − − +⎜ ⎟⎝ ⎠

Dept. of CE, GCE Kannur Dr.RajeshKN

45

Page 46: Mechanics of structures - module3

3 33 3,

2 3 6dy w l dy wlAt x l EI l ldx dx EI

⎛ ⎞= = − − + ∴ = −⎜ ⎟

⎝ ⎠2 3 6dx dx EI⎝ ⎠

4 4 4 4w l l l wl⎛ ⎞,

2 2 3 12 8w l l l wlAt x l EIy y

EI⎛ ⎞

= ∴ = − − + ∴ = −⎜ ⎟⎝ ⎠

Dept. of CE, GCE Kannur Dr.RajeshKN

46

Page 47: Mechanics of structures - module3

Moment area methodMoment area methodCharles E. Greene

•For deflections of beams especially cantilever beams•For deflections of beams, especially cantilever beams

•Suitable when slopes and deflections at particular points are required not the complete equation of the deflection curverequired, not the complete equation of the deflection curve

Dept. of CE, GCE Kannur Dr.RajeshKN

47

Page 48: Mechanics of structures - module3

Moment area theoremsMoment area theoremsO

RdαA

B

dsmn

α

x.dα y

xdx xdx

B’

Dept. of CE, GCE Kannur Dr.RajeshKN

48

Page 49: Mechanics of structures - module3

B

O 1 Md ds dsα = =

RdαA

B R EIMds dx d dxEI

α≅ ⇒ =

dsmn

EI

Md dxEI

α α= =∫ ∫α

x.dα yEI∫ ∫

M

xdx

Mxd xdsEI

Mds dx xd xdx

α

α

=

≅ ⇒

B’

ds dx xd xdxEI

α≅ ⇒ =

My xd xdxEI

α= =∫ ∫

Dept. of CE, GCE Kannur Dr.RajeshKN

49

Page 50: Mechanics of structures - module3

M t A Th 1Moment Area Theorem 1

Angle between tangents at A & B = (Area of BMD between A & B) /EI

Moment Area Theorem 2Moment Area Theorem 2

Deviation of B from tangent at A = (Moment of BMD between A & B, b t B) /EI about B) /EI

Dept. of CE, GCE Kannur Dr.RajeshKN

50

Page 51: Mechanics of structures - module3

Bl

Slope at B of the deflected beam = Area of M/EI

( )

p /diagram between A & B

2l Pl Pl= =(-)Pl

EI2 2EI EI

= − = −

Deflection at B of the beam = Moment of M/EI Deflection at B of the beam Moment of M/EI diagram between A & B about B 2 32

2 3 3Pl l PlEI EI

= − = −

Dept. of CE, GCE Kannur Dr.RajeshKN51

Page 52: Mechanics of structures - module3

l

Slope at B of the deflected beam = Area of M/EI

l

diagram between A & B 2 3

3 2 6l wl wl

EI EI= − = −

2l ( ) 3 2 6EI EI2

2wlEI

(-)

Deflection at B of the beam = Moment of M/EI 3 43l l l/

diagram between A & B about B3 43

6 4 8wl l wlEI EI

= − = −

Dept. of CE, GCE Kannur Dr.RajeshKN

52

Page 53: Mechanics of structures - module3

C

CA B

Deflected shape

PL4PLEI

M/EI diagram C

A B

g C

Slope at A of the deflected beam = Area of M/EI di b t A & C

21 l Pl Pl= =diagram between A & C

2 2 4 16EI EI= =

Deflection at C of the beam = Moment of M/EI diagram 2 3

Dept. of CE, GCE Kannur Dr.RajeshKN

Deflection at C of the beam = Moment of M/EI diagram between A & C about A

2 323 2 16 48

l Pl PlEI EI

= =

Page 54: Mechanics of structures - module3

Deflected shapeC

B

2

8wLEIA B8EI

M/EI diagram C

A B

Slope at A of the deflected beam = Area of M/EI diagram between A & C

2 323 2 8 24

l wl wlEI EI

= =

Deflection at C of the beam = Moment of M/EI3 45 5l wl wl

= =

Dept. of CE, GCE Kannur Dr.RajeshKN

54

/diagram between A & C about A 8 2 24 384EI EI

= =

Page 55: Mechanics of structures - module3

Conjugate beam method

Actual beam

j g

l B

Conjugate beam(-)Pl

E I

BA

EI

Slope at B of the deflected beam Shear force at B of the conjugate Slope at B of the deflected beam = Shear force at B of the conjugate beam when conjugate beam is loaded with M/EI diagram 2

2 2l Pl Pl

EI EI= =

Deflection at B of the beam = Bending moment at B of the conjugate beam when conjugate beam is loaded with M/EI diagram 2 32Pl l Pl

Dept. of CE, GCE Kannur Dr.RajeshKN

j g / g 22 3 3Pl l PlEI EI

= =

Page 56: Mechanics of structures - module3

Conjugate beam method - proof2

2

d yEI Mdx

=

3 4

In the actual beam,

3

3 , Shear forced y dMEI Vdx dx

= =4

4 , Loadd y dVEI wdx dx

= =

load, MwEI

=0 0

Shear force,x x MV wdx dx

EI= =∫ ∫In the conjugate beam,

Bending moment,x x x MM Vdx dx

EI= =∫ ∫ ∫

0 0 0 EI

Page 57: Mechanics of structures - module3

2

i h j b i h l b x xM d y dyd d∫ ∫

Hence,

20 0

in the conjugate beam in the actual beam

Shear force in the conjugate beam Slope in the actual b am

e

M d y dydx dxEI dx dx

= =

=

∫ ∫

2x x x xM d 2

20 0 0 0

in the conjugate beam in the actual beam

BM i th j t b D fl ti i th t l

b

x x x xM d ydx yEI dx

= =∫ ∫ ∫ ∫BM in the conjugate beam Deflection in the actual e m b a=

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 58: Mechanics of structures - module3

Conjugate supportsj g pp

Actual support. Conjugate support.

Dept. of CE, GCE Kannur Dr.RajeshKN

58

Page 59: Mechanics of structures - module3

Example 1:

l

Actual beam

B

( )Conjugate beam

BA

(-)PlEI

Slope at B of the deflected beam = Shear force at B of the conjugate beam when conjugate beam is loaded with M/EI diagram

2

2 2l Pl Pl

EI EI= =

Deflection at B of the beam = Bending moment at B of the conjugate beam when conjugate beam is loaded with M/EI diagram

2 32Pl l Pl

Dept. of CE, GCE Kannur Dr.RajeshKN

59

2 322 3 3Pl l PlEI EI

= =

Page 60: Mechanics of structures - module3

Example 2:

ll

( )Conjugate beam

BA

2

2wlEI

(-)

Slope at B of the deflected beam = Shear force at B of the conjugate beam when conjugate beam is loaded with M/EI diagram 2 3l wl wl

3 2 6EI EI= =

Deflection at B of the beam = = Bending moment at B of the conjugate beam when conjugate beam is loaded with M/EI diagram 3 43

6 4 8wl l wlEI EI

= =

Dept. of CE, GCE Kannur Dr.RajeshKN

60

6 4 8EI EI

Page 61: Mechanics of structures - module3

Example 3:

4PlEIA B

C21 l Pl Pl⎛ ⎞

⎜ ⎟

2Pl2l

2l

C

Conjugate beam

2 2 4 16EI EI⎛ ⎞ =⎜ ⎟⎝ ⎠ 16EI22

j g

Slope at A of the deflected beam = Shear force at A of the conjugate beam when conjugate beam is loaded with M/EI diagram 21 l Pl Pl⎛ ⎞

⎜ ⎟12 2 4 16

l Pl PlEI EI

⎛ ⎞= =⎜ ⎟⎝ ⎠

Deflection at C of the beam = = Bending moment at C of the conjugate beam when conjugate beam is loaded with M/EI diagram

2 2 31l Pl l Pl Pl⎛ ⎞

Dept. of CE, GCE Kannur Dr.RajeshKN

12 16 3 2 16 48l Pl l Pl Pl

EI EI EI⎛ ⎞

= − =⎜ ⎟⎝ ⎠

Page 62: Mechanics of structures - module3

Example 4:

2

8wLEI

A B

CC2 31 2l wl wl⎛ ⎞

=⎜ ⎟3wl

Conjugate beam

2 3 8 24EI EI=⎜ ⎟

⎝ ⎠ 24EI

Slope at A of the deflected beam = Shear force at A of the conjugate beam when conjugate beam is loaded with M/EI diagram 3lconjugate beam is loaded with M/EI diagram

fl f h b d f h b

3

24wl

EI=

Deflection at C of the beam = = Bending moment at C of the conjugate beam when conjugate beam is loaded with M/EI diagram

3 2 43 2 5l wl l l wl wl⎧ ⎫⎛ ⎞⎛ ⎞

Dept. of CE, GCE Kannur Dr.RajeshKN

3 2 52 24 8 2 3 2 8 384l wl l l wl wl

EI EI EI⎧ ⎫⎛ ⎞⎛ ⎞= − =⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭

Page 63: Mechanics of structures - module3

Principle of SuperpositionPrinciple of Superposition

Statement: Deflection at a given point in a structure produced byseveral loads acting simultaneously on the structure can beseveral loads acting simultaneously on the structure can befound by superposing deflections at the same point producedby loads acting individually.

Applicable when there exists a linear relationship betweenexternal forces and corresponding structural displacements.p g p

Dept. of CE, GCE Kannur Dr.RajeshKN

63

Page 64: Mechanics of structures - module3

SummarySummary

Bending stresses in beams - shear flow - shearing stress formulae for Bending stresses in beams shear flow shearing stress formulae for beams –

Inelastic bending of beams –Inelastic bending of beams –

Deflection of beams - direct integration method - singularity functions iti t h i t th d j t b - superposition techniques - moment area method - conjugate beam

ideas –

l f ll d b f d dElementary treatment of statically indeterminate beams - fixed and continuous beams

Dept. of CE, GCE Kannur Dr.RajeshKN

64