Watertaxi-3rd project presentation-BUET

  • Published on
    17-Nov-2014

  • View
    856

  • Download
    0

Embed Size (px)

DESCRIPTION

 

Transcript

<ul><li> 1. BANGLADESH UNIVERSITY OF ENGINEERING &amp; TECHNOLOGY<br />NAME 338 <br />SHIP DESIGN PROJECT &amp; PRESENTATION-3<br />DATE-18 ,April,2011<br /></li></ul> <p> 2. DESIGN OF A WATER TAXI FOR 100 PASSENGERS in SADARGHAT-ASHULIA ROUTE<br />Project Supervisor<br />KhabirulHaqueChowdhury<br />Professor<br />Department of Naval Architecture &amp; Marine Engineering,BUET<br />Presented By-<br />Hasib-Ul-Haque (0712014)<br />Ahmad ShibliSaleheen(0712018)<br /> 3. OBJECTIVES<br />To use the circular water ways around Dhaka city<br />To ease the water way communication with comfortable service<br />To reduce the pressure on land transport.<br />To safe people from horrible traffic jam. <br /> 4. PRINCIPAL PARTICULARS <br />LENGTH:<br />OVERALL: 24.90 meter <br />Load water line : 24.122 meter<br />L.B.P : 22.95 meter<br />BREADTH:<br />MAXIMUM: 6.5 meter<br />MOULDED: 6.3 meter<br />DEPTH(MLD) :2.0 meter <br />DRAFT(MLD) :1.1 meter<br /> 5. PRESENTATION TOPICS<br />1.Rudder design.<br />2.Engine selection and foundation.<br />3.GA and Lines plan update<br />4.Weight calculation update<br />5.Hydrostatic calculation update<br />6. Trim and Stability update<br /> 6. Rudder Design-Calculation from GL<br /> 7. CAD Drawing<br /> 8. Steering Arrangement<br /> 9. Resistance &amp; Power CalculationHoltrop Mennen Method<br />RT = RF(1+K1) + RAPP + RW + RB + RTR + RA<br />Where,<br /></p> <ul><li>RF = Frictional resistance according to ITTC 1957 friction formula </li></ul> <p> 10. (1+K1) = Form factor describing the viscous resistance of the hull form in relation to RF 11. RAPP = Appendage resistance 12. RW = Wave making and wave breaking resistance 13. RB = Additional pressure resistance due to bulbous bow near the water surface 14. RTR = Additional pressure resistance of immersed transom stern 15. RA = Model ship correlation resistance<br /> 16. Resistance &amp; Power Calculation<br />For our ship we get,<br /> RF= 4.6430 KN<br />(1+K1) = 1.22<br />RAPP = 0.1417 KN<br />RW= 9.0478 KN<br />RB = 0<br />RTR = 0<br />RA = 1.7609 KN<br />So, RT = 16.6149 KN<br />Effective power,PE = RT V <br />= 16.6149 12 0.5149 <br /> = 102.65 KW = 137.68 HP<br /> 17. Resistance &amp; Power Calculation<br />Shaft Power,Ps= PE/[ R 0s(1-t)/(1-w)] = 188.19 HP<br />Delivered Power,PD= s Ps= 0.99 188.19 = 186.31 HP<br />Break horse power = PS/ G = 194.01 HP<br />Where,<br />G= gear efficiency = 97%<br /> 18. Engine Selection<br />Yanmar type 4JH4-HTE<br /> 19. Engine Selection<br />Steyr Motor Engines-M0114K33 <br /> 20. Why we select Yanmar type 4JH4-HTE??<br />The Yanmar type 4JH4-HTE Engine is designed for high performance.<br />The innovative fuel injection technology enables an excellent torque and speed range.<br />Service Life-this engine is manufactured using high alloy materials to provide enduring longevity for all running components.<br />Comfort-The patented 2-stage UNIT Injector fuel injection technology provides for a worldwide approped and smooth operation noise<br />Exhaust Emissions-The trend-setting UNIT INJECTOR system enables us already today to conform with the valid emission regulations.<br />Transmission-this engine allow the installation with different driving system in our boat.<br /> 21. Power <br />Yanmar type 4JH4-HTE<br />Steyr Motor Engines-M0114K33 <br /> 22. Fuel Consumption<br />Yanmar type 4JH4-HTE<br />Steyr Motor Engines-M0114K33 <br /> 23. Torque<br />Yanmar type 4JH4-HTE<br />Steyr Motor Engines-M0114K33 <br /> 24. Engine Dimension<br />Aft view<br />Right View<br /> 25. Engine Specification<br /> 26. Engine Foundation<br /> 27. CAD Drawing<br /> 28. CAD Drawing<br /> 29. CAD Drawings<br /> 30. Equipments<br /> 31. VARIANCE IN DATA<br /> 32. GAUpdate<br /> 33. MODIFICATION OF GENERAL ARRANGEMENT <br />1.Canteen facility has been cancelled<br />2.Number of Bulkhead is reduced<br />4.Seating arrangement has been renovated and updated<br />5.Change in Cabin type,size and position<br /> 34. Comparison between GA plans<br />GA-Updated<br />GA-Previous<br /> 35. Lines Plan Update<br /> 36. Deadweight calculation<br /> 37. DEADWEIGHT CALCULATION<br />No of person on board:<br />No of passenger = 100<br />No of crew = 6<br />Total = 106<br />Weight allowance per person:<br />Weight per person = 75 kg<br />Luggage per person = 5 kg<br />Total = 80 kg<br />Total weight for persons = 80 106<br /> = 8.48 tons<br /> 38. Capacity calculation<br /> 39. Summery from Capacity Calculation <br /> 40. Summary of deadweight<br /> 41. Lightweightcalculation<br /> 42. SHELL EXPANSION<br /> 43. Longitudinal<br /> 44. CALCULATION OF WEIGHT OF PLATES<br /> 45. weight of other items<br /> 46. WEIGHT OF OTHER ITEMS<br /> 47. MISCELLANEOUS : 2 TONNE<br /> 48. So,the total lightweight of the vessel is = (9.47+47.93) tons<br /> = 57.4 tons <br />Therefore, <br />the displacement of the vessel= Lightweight+Deadweight<br />= 57.4 + 17.48<br />= 74.88 tons<br />Which was previously 123.48 tons <br /> 49. HYDROSTATIC UPDATE<br /> 50. 51. Hydrostatic Parameters<br /> 52. Form coefficient<br /> 53. Longitudinal centre of buoyancy<br />Updated<br />Previous<br /> 54. Longitudinal metacentre<br />Updated<br />Previous<br /> 55. Transverse metacentre<br />Updated<br />Previous<br /> 56. Displacement<br />Updated<br />Previous<br /> 57. Water plane coefficient<br />Updated<br />Previous<br /> 58. Prismatic coefficient<br />Updated<br />Previous<br /> 59. Vertical centre of buoyancy<br />Updated<br />Previous<br /> 60. Block coefficient<br />Updated<br />Previous<br /> 61. Midship section coefficient<br />Updated<br />Previous<br /> 62. Longitudinal centre of flotation<br />Previous<br />Updated<br /> 63. MCT 1m<br />Previous<br /> 64. MCT 1m<br />Updated<br /> 65. STABILITY CALCULATION<br /> 66. GZ SAMPLE CALCULATION AT 30INCLINATION<br /> 67. GZ SAMPLE CALCULATION AT 30 INCLINATION<br />V.C.G from keel= 1.31 m<br />KB = 0.69 m<br /> 68. GZ CURVE<br /> 69. TRIM UPDATE<br /></p> <ul><li>LCB At LWL = 0.72 m aft of amidship </li></ul> <p> 70. LCG of total ship = 0.93 m aft of amidship 71. Displacement of the Ship = 74.68tonneAt LWL,<br /></p> <ul><li>MCT1m = 141.16 tonne-m </li></ul> <p> 72. C.F.= 1.08 m aft of amidship 73. Draft = 1.1 m[The value of LCB,MCT1m,C.F. are taken from the Hydrostatic Calculations earlier in the design procedure]<br /> 74. TRIM UPDATE<br />Now,<br />Amount of Trim={(0.93-0.72)*74.68}/141.16 <br /> = 0.1111 mby stern<br />So,<br />Change in Trim aft= 0.05 m<br />Change in Trim Forward= 0.061 m<br />Therefore, resulting<br />Draft Forward= 1.1-0.061 = 1.039 m<br />Draft Aft= 1.1+0.05 = 1.15 m<br /></p>