87

PPT - Tsunami Vs. Storm Surge

  • View
    1.000

  • Download
    0

Embed Size (px)

DESCRIPTION

This is our presentation for our major project !!

Citation preview

Page 1: PPT - Tsunami Vs. Storm Surge
Page 2: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 2

Tsunami Vs. Storm Surge

Group ExodusMembers:1.Benj P. Almojuela2.Angelo A. Asoy3.Jaymz Rainiel C. Bacho

Page 3: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 3

Preface

Dear Readers, This power point presentation has been designed how to learn what to do when you are hit by this disaster. In this power point presentation you will find the the disaster that struck the world. In this power point you’ll find the study, history and the plan how to do if you are hit by this disaster. This power point contains the study, history and circumstances happens in earth in the past years until now.

Page 4: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 4

IntroductionGreetings On Readers, The purpose of my presentation is to introduce the importance of preparedness in case of severe accidents impacting your area and what would make when it hits your area. and you still see the 2 types of movement of water and how they occur more why they are moving and how strong is it when you hit the ground. The two types is Tunami and Storm Surge and you will see the meaning and difference of two movement of water. The one you will see in this presentation are examples only. It took only internet.

Page 5: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 5

Table of Contents Page Chapter 1• History & Background of Tsunami and Storm Surge - - - - - - - - - - - - - - - - - - - 6-13 Chapter 2• Tsunami - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14 - 41• Storm Surge - - - - - - - - - - - - - - - - - - - - - - - - - - - 42 - 70 Chapter 3• Similarities and Difference Between Tsunami and Storm Surge - - - - - - - - - - - - - - - - - 71 – 84• Conclusion - - - - - - - - - - - - - - - - - - - - - - - - - - - - 85• References - - - - - - - - - - - - - - - - - - - - - - - - - - - - 86 - 87

Page 6: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 6

CHAPTER 1 – History and background of Tsunami and Storm Surge

Page 7: PPT - Tsunami Vs. Storm Surge

HISTORY OF TSUNAMI The word tsunami comes from the Japanese language. In that language the word means harbor wave. Long ago, Japanese fishermen created the word tsunami. They would return from the sea to find that their villages had been destroyed by large waves. They had not been aware of waves large enough to wash away a village while at sea. The waves had traveled through the sea until they reached a point near the land and the water became shallower. The shallow water had caused the wave to be pushed to the surface. In the open water of the ocean, this type of wave could not be detected. These destructive waves are sometimes mistakenly called tidal waves. As the waves approach the land without warning, they can look like a particularly violent tide rushing to the shore. But these waves really have nothing to do with the tide. Scientists don't like to hear people call tsunamis "tidal waves" because of this wrong idea. The "normal" waves that you can see crashing onto the shore are caused by the action of wind on the ocean. Tsunamis are many times caused by an earthquake. Earthquakes are caused when pieces of the earth's crust shift. Energy released by the earthquake causes the water in the ocean to be displaced or moved. You can see this kind of action for yourself. If you bring your hands quickly together underwater in a pool or bathtub, you will see the water above your hands start to form a wave. It has been displaced. The same thing will happen if someone cannonballs into a pool of water. The water will splash out over the sides of the pool. It has been displaced. Tsunamis can also be caused by landslides where large chunks of land suddenly slide into the sea. A meteor landing in the ocean can cause tsunamis, too.

CHAPTER 1

Page 8: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 8

Recent tsunami Date Cause Height Location Country

Deaths1883 Volcanic eruption 35 m Indonesia - - - - - 36,0001896 Earthquake 29 m Japan - - - - - - - 27,0001933 Earthquake 30 m Japan - - - - - - - 3,0001946 Earthquake 15 m Alaska - - - - - - - 1751960 Earthquake 10 m Chile - - - - - - - - 1,2501964 Earthquake 6 m Alaska - - - - - - - 1251992 Earthquake 26 m Nicaragua - - - - - 1701992 Earthquake 26 m Indonesia - - - - - - 1,0001993 Earthquake 31 m Japan - - - - - - - - - 2391994 Earthquake 14 m Indonesia - - - - - 2381998 Landslide 15 m Papua - - - - - - - - 2,2002004 Earthquake 30 m Sumatra - - - - - 245,0002010 Earthquake 10 m Chile - - - - - - - - 214+2011 Earthquake 51.51 Japan - - - - - - - 15,8838

Page 9: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 9

HISTORY OF STORM SURGE

This article is about the meteorological terminology. For the fictional character, see Storm Surge (Transformers). A storm surge is an offshore rise of water associated with a low pressure weather system, typically tropical cyclones and strong extratropical cyclones. Storm surges are caused primarily by high winds pushing on the ocean's surface. The wind causes the water to pile up higher than the ordinary sea level. Low pressure at the center of a weather system also has a small secondary effect, as can the bathymetry of the body of water. It is this combined effect of low pressure and persistent wind over a shallow water body which is the most common cause of storm surge flooding problems. The term "storm surge" in casual (non-scientific) use is storm tide; that is, it refers to the rise of water associated with the storm, plus tide, wave run-up, and freshwater flooding. "Tidal surge" is incorrect since there is no such thing. When referring to storm surge height, it is important to clarify the usage, as well as the reference point. The U.S. National Hurricane Center defines storm surge as water height above predicted astronomical tide level, and storm tide as water height above NGVD-29, a 1929 benchmark of mean sea level. Most casualties during a tropical cyclone occur during the storm surge.

Page 10: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 10

In areas where there is a significant difference between low tide and high tide, storm surges are particularly damaging when they occur at the time of a high tide. In these cases, this increases the difficulty of predicting the magnitude of a storm surge since it requires weather forecasts to be accurate to within a few hours. Storm surges can be produced by extratropical cyclones, such as the Night of the Big Wind of 1839 and the Storm of the Century (1993), but the most extreme storm surge events typically occur as a result of tropical cyclones. Factors that determine the surge heights for landfalling tropical cyclones include the speed, intensity, size of the radius of maximum winds (RMW), radius of the wind fields, angle of the track relative to the coastline, the physical characteristics of the coastline and the bathymetry of the water offshore. The SLOSH(Sea, Lake, and Overland Surges from Hurricanes) model is used to simulate surge from tropical cyclones. Additionally, there is an extratropical storm surge model that is used to predict those effects.The Galveston Hurricane of 1900, a Category 4 hurricane that struck Galveston, Texas, drove a devastating surge ashore—between 6,000 and 12,000 lives were lost, making it the deadliest natural disaster ever to strike the United States. The deadliest storm surge caused by a tropical cyclone in the twenty-first century is from Cyclone Nargis which killed more than 138,000 people in Myanmar in May 2008. The next deadliest this century is from Typhoon Haiyan in 2013. Haiyan (Yolanda) killed more than 3,600 people in the central Philippines and resulted in economic losses estimated at $14 billion (USD).Extreme storm surges may occur more often due to the effects of global warming. For example, the Marshall Islands are threatened by the potential effects of storm surges as well as sea level rise. A U.S. Geological Survey study found that the Midway Atoll, Laysan, and Pacific islands like them could become inundated and unfit to live on during this century.

Page 11: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 11

RECENT STORM SURGE IN AMERICADate Height location Country Deaths1933 6-10 feet Washngton DC

181935 18-20 feet South Florida

4231936 9.3 feet N.Carolina

11938 19-20 feet New England

5641940 10.7 feet Georgia N/S.Carolina

501942 14.7 feet Texas

81944 12.28 feet Florida-Cuba 181945 15 feet Texas

31947 16 feet Mississippi GC/New Orleans

511948 12 feet Florida/Georgia/S.Carolina 11949 11.4 feet Texas

21954 10-15 feet Long Island New York

601954 17 feet N/S.Carolina

951955 5-8 feet N.Carolina-Morehead City

251956 7.4 feet Mississippi/New Orleans

151957 12 feet Texas-Louisiana Border

4161959 10 feet South Carolina 101960 15-20 feet Florida Keys

501961 18.5 feet Port o’Connor ,TX

46

Page 12: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 12

1964 10-12 feet NorthernEast Florida 11964 10 feet Central Louisiana Coast 381965 10-12 feet Southern Florida

811966 10 feet Cuba-Florida Keys 61969 15-32 feet Bay St.Louis,MS 2561970 11.4 feet Corpus Christi, Texas

131972 6-7 feet Cape San Blas Florida

1221979 8-12 feet Dauphin Island , AL 111980 15-20 feet Brownsville, TX

21983 10-12 feet Continental US-S.Texas

211985 10 feet Biloxi, MS

41985 4-8 feet Morgan City, LA 121989 13-20 feet N/S.Carolina

211991 8-17 feet Rhode Island

21992 16.9 feet Florida 261992 30 feet Hawaii

71993 10.2 feet N.Carolina

31994 3-5 feet Florida

301995 5-14 feet Pensacola Beach, FL

91996 5-6 feet Wilmington, NC

121996 8-12 feet N.Carolina Coast

26

Page 13: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 13

1996 6-9 feet Georgia 0

1998 5-8 feet Wilmington, NC 3

1998 3-8 feet Panama City 3

1999 6-8 feet Corpus Christi, TX 1

1998 5-12 feet Key West, FL-Biloxi, MS 6021999 3-5 feet N.Carolina-Florida

42000 9-10 feet Cape Fear, NC

562002 5-6 feet N.Carolina

12002 8.3 feet Cuba 42003 10-12 feet Louisiana Coast

02004 6-9 feet Texas 12003 6-10 feet N.Carolina-E.Central Virginia

162004 6 feet N.Caolina

12004 6-7 feet S,E.Florida

102005 24-28 feet Buras, LA-New Orleans-Mississippi

15002008 15-20 feet Galveston-Bolivar

202010 19 feet Canada

52011 8-11 feet Cape,Lookout, NC-New England 412012 4-6 feet Louisiana 3

Page 14: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 14

CHAPTER 2 – Tsunami and Storm Surge Information

Page 15: PPT - Tsunami Vs. Storm Surge

TSUNAMI

A view from the beach in Thailand

Page 16: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 16

Tsunami produced by earthquake displacement of ocean floor.

Important points:

In deep ocean, tsunami has small amplitude and travels with speed of jet airliner.

When approaching land, speed slows and amplitude increases dramatically.

Page 17: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 17

Properties of ocean waves & tsunami.

Periods LengthsWind-blown short: 5 seconds 39 meters (130 ft)Ocean waves medium: 10 seconds 156 meters (510 ft) long: 20 seconds 624 meters (2050 ft)Tsunami superlong: 3600 seconds >800 kilometers

(60 minutes) (520 miles)

LONG period: Wind waves wash on shore for < 5 seconds. Tsunami can wash on shore for 10 - 15 minutes!

Page 18: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 18

Lithospheric plates

What type(s) of plate tectonic boundaries are capable of producing tsunami?

Page 19: PPT - Tsunami Vs. Storm Surge

Convergent Plate Boundaries

Tsunami are often generated by large and shallow earthquakes at subduction zones where oceanic plates descend into the deeper mantle. These types of earthquakes can produce the rapid displacements of the ocean floor that generate tsunamis.

Ocean /Continent convergence (Cascades)Ocean /Ocean convergence (Marianas)

19PPT - Tsunami Vs. Storm Surge04/07/2023

Page 20: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 20

Lithospheric plates

Tooth pattern shows the convergent plate boundaries. Notice that convergent plate boundaries form a large portion of the Pacific Ocean perimeter. The Java Trench is the only area of the Indian Ocean capable of producing tsunami.

Page 21: PPT - Tsunami Vs. Storm Surge

The generation of a tsunami by storage and release of elastic energy at a subduction zone.

Between earthquakes, rocks near fault bend and store elastic energy. During earthquake, that energy is rapidly released.

The displacement of the seafloor produces a mound of water that spreads out into the tsunami.

Image grab of the animation

See Notes for link.

Page 22: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 22

Lithospheric plates

Now examine the plate tectonic boundary at the Java Trench in the eastern Indian Ocean.

Page 23: PPT - Tsunami Vs. Storm Surge

December 26, 2004M 9.1 Main shock and aftershocks

Largest earthquake since 1964. Fourth largest earthquake since 1900.

~1200 km of the plate boundary moved; maximum displacement ~ 20 m

Page 24: PPT - Tsunami Vs. Storm Surge

Banda Aceh, Sumatra Satellite Images Indicate Land Subsidence

Before AfterSome areas that were above sea level on December 25 dropped below sea level on

December 26.This also happened along the Washington - Oregon coast during the 1700 AD great

Cascadia earthquake.

Page 25: PPT - Tsunami Vs. Storm Surge

Surface waves circling the Earth

Paths of surface waves

Page 26: PPT - Tsunami Vs. Storm Surge

7th largest earthquake since 1900! NOT an aftershock. Main shock was outside zone of aftershocks of Dec 26 earthquake. Probably the result of stress changes following 26 December earthquake.

March 28, 2005 M 8.7 Main shock and aftershocks

Page 27: PPT - Tsunami Vs. Storm Surge

March 28 Event Recorded by UPOR

Event occurred at 16:09 UT.First waves at UP ~16:31 UT.

Page 28: PPT - Tsunami Vs. Storm Surge

Question: What other great (M > 8) earthquakes have occurred in the region?

Answer: From Southern Sumatra to the Andaman Islands 1. 1797 Magnitude 8.42. 1833 Magnitude 8.73. 1861 Magnitude 8.54. 2000 Magnitude 7.9

AND March 28, 2005 Magnitude 8.7

Sumatra earthquakes FAQs

Page 29: PPT - Tsunami Vs. Storm Surge

Answer: 1. 1833 South coast of western Sumatra. Southern part of the western Sumatra flooded. 2. 1843 West of central Sumatra. Wave from the south-east flooded coast of the Nias Island.

3. 1861 Strong earthquake affected western Sumatra. Several thousand fatalities. 4. 1883 Krakatau eruption 36,000 fatalities.

Question: What other significant tsunami have occurred in the region?

2004

1843

1861

1833

Page 30: PPT - Tsunami Vs. Storm Surge

Tsunami travel time (hours; simulation)

NOAA

Page 31: PPT - Tsunami Vs. Storm Surge

Animation of Dec 26,2004 tsunami

NOAA

Image grabs of the animation Tsunami_TITOV-INDO2004.mov

See Notes for location

Page 32: PPT - Tsunami Vs. Storm Surge

Largest earthquakes, 1900 - 2004

Sumatra 12/26/04 is 4th largest; Sumatra 3/28/05 is 7th.9 of the 13 largest earthquakes since 1900 around the perimeter of the Pacific Ocean.

Page 33: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 33

Pacific tsunami travel times

Travel times are predictable and provide time for warnings, except near the earthquake. Amplitudes are not predictable but are now measurable by Pacific tsunami warning system.

Page 34: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 34

Deep-ocean Assessment and Reporting of Tsunami (DART) Pacific Tsunami Warning System

Page 35: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 35

Page 36: PPT - Tsunami Vs. Storm Surge

Great Cascadia earthquake of 1700 AD

Drowned Sitka spruce at Young’s Bay near Astoria.

1700 AD tsunami sand.36PPT - Tsunami Vs. Storm Surge04/07/2023

Page 37: PPT - Tsunami Vs. Storm Surge

Compare Sumatra EQ to Cascadia Subduction Zone

A great earthquake on the Cascadia Subduction Zone would be

frighteningly similar to the Sumatra earthquake!

Resulting tsunami would also be comparable!

Page 38: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 38

See notes below for “Killer Wave”

Video of Cascadia - Puget Sound

tsunami evidence.

Page 39: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 39

Cascadia tsunami animation.

Time between earthquake and tsunami along Pacific NW coast?

Page 40: PPT - Tsunami Vs. Storm Surge

Seaside Tsunami Evacuation Plan

Note the scale.

Difficulties:Bays

RiversBridges

Public education required is VERY challenging.Let’s develop evacuation plans from three perspectives:

Mayor; Police Chief; Hotel owner.Include a quantitative analysis in your plan.

Page 41: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 41

Page 42: PPT - Tsunami Vs. Storm Surge

Hurricane Storm Surge Modeling

Now this is the storm surge compilation of the storm surge events happen in earth long time and current time and how to avoid storm surge.

STORM SURGE

Page 43: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 43

Objectives

• Define the characteristics of a hurricane and the hazards associated with a hurricane storm surge.

• Explain the Saffir-Simpson Hurricane Scale • Clarify the uses, capabilities, limitations and

outputs of the SLOSH Storm Surge Modeling Program

Page 44: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 44

A Hurricane

• Is a tropical cyclone • Originates over warm tropical waters • Has sustained winds of at least 74 mph (64

knots) or greater for a duration of six to eight hours.

• Occurs in the Northern Hemisphere

Page 45: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 45

Major U.S. Landfalling Hurricanes 1899 - 2000

• Areas in the U. S. vulnerable to hurricanes include the Atlantic and Gulf coasts from Texas to Maine, the territories in the Caribbean, and tropical areas of the western Pacific, including Hawaii, Guam, American Samoa, and Saipan.

Page 46: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 46

Factors Impacting Storm Surge

• Meteorological Parameters– Intensity of storm– Atmospheric pressure– Tract of storm– Forward speed– Radius of maximum

winds

• Physical characteristics of the basin– Slope of coast– Roughness of coast– Coastline– Natural or man made

barriers

Page 47: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 47

Meteorological Parameters

• The intensity of the hurricane is measured by the central barometric pressure and maximum surface winds at the center of the storm.

• Storm surge begins to build while the hurricane is still far out at sea over deep water.

• The low pressure near the center of the storm causes the water to rise.

• The storm size or radius of maximum winds can vary from as little as 4 miles to over 50.

Page 48: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 48

Characteristics of the Basin

• A shallow slope off the coast shown in the Figure below will allow a greater surge to inundate coastal communities.

• As the water depth decreases closer to the shore, the excess water is not able to dissipate.

Page 49: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 49

Hurricane Uncertainty

• Uncertainty about how intense the storm will be when it makes landfall

• Uncertainty associated with the hurricane storm tract.

Page 50: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 50

Saffir-Simpson Damage Potential Scale

Category 1 Winds 74-95 mph Surge 1.2-1.6 meters

Category 2 Winds 96-110 mph Surge 1.7-2.5 meters

Category 3 Winds 111-130 mph Surge 2.6-3.8 meters

Category 4 Winds 131-155 mph Surge 3.9-5.5 meters

Category 5 Winds > than 155 mph Surge > 5.5 meters

Page 51: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 51

SLOSH (Sea, Lake, and Overland Surges from Hurricanes)

• One of the sophisticated mathematical models used by NHC to calculate potential surge heights from hurricanes;

• Used by NHC for determining storm surge warnings and hurricane evacuation

• Used by NHC all over the eastern seaboard of the U.S • Represents a tropical cyclone and its environment and

forecasts the future motion and intensity of a cyclone.

Page 52: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 52

SLOSH Model

• Simulates inland flooding from storm surge • The model permits the overtopping of barriers and flow

through barrier gaps. • The results from a SLOSH flooding and hazards analysis

can help estimate the extent and timing of an evacuation (Allenstein 1985).

• SLOSH is not a prediction model rather, SLOSH requires that specific hurricane boundary conditions be externally provided to the model (Allenstein 1985).

Page 53: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 53

SLOSH helps in Decision-making

• What is the nature of the approaching natural threat?

• Who is at risk and to what extent? • Where should these people go for safety? • How much time is there to evacuate?

Page 54: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 54

SLOSH Model Requirements

• A hurricane track, • Central sea level pressure, and• Radius of maximum wind into a distribution of sea

surface wind stress and pressure forces.

Page 55: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 55

NHC Models

• Statistical Models: forecast the future by using current information about the hurricane and comparing it to historical knowledge about the behavior of similar tropical cyclones

• Dynamical Models: use the results of global atmospheric model forecasts, taking current wind, temperature, pressure and humidity observations to make forecasts of the actual atmosphere in

which the cyclone exists. • Combination Models: incorporate numerically forecast data

into a statistical prediction framework

Page 56: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 56

Uses of SLOSH • Real time forecasting of surges from actual hurricanes

within selected Gulf and Atlantic coastal basins – Furnishes surge heights for open coast, – Computes the routing of storm surge into bays, estuaries, or coastal river

basins as well as calculating surge heights for over land locations

• Evacuation planning– Flood areas are determined by combining peak model surge values using

input parameters from 200 to 300 hypothetical hurricanes – SLOSH is able to estimate the overland tidal surge heights and winds that

result from hypothetical hurricanes – Model tidal surge outputs are applied to a specific locale's shoreline

• SLOSH model is also designed for use in an operational mode

Page 57: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 57

Use of SLOSH with Hurricane Evacuation Study

• If a local jurisdiction has a Hurricane Evacuation Study (which combines SLOSH model results with traffic flow information), the jurisdiction does not need information about storm surge heights in a real hurricane situation.

• Local officials only need to know the forecast of the storm's intensity (Cat 1 etc.) at landfall and the tide at that time to be able to make an appropriate evacuation decision.

Page 58: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 58

SLOSH Data Requirements

• Storm positions• The lowest atmospheric sea level

pressure in the eye of the hurricane • The storm size measured from the center

to the region of maximum winds • Initial height of the water surface

– Tidal fluctuations (low or high tide) immediately prior to landfall have not been accounted for in SLOSH

• Characteristics of the basin

Page 59: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 59

SLOHS Outputs• A grid representing a natural

basin or large geographical area – Surface envelope of the

highest surges for each cell in the grid

– Time histories of surges at selected grid points

– Computes wind speeds at selected grid points;

– determines wind directions at selected grid points

Page 60: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 60

• Graphical output from the SLOSH model displays color-coded storm surge heights for a particular area in feet.

Page 61: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 61

Potential Peak Surges for a Regional Hurricane Study

• The highest surge is called the maximum envelope of water (MEOW). – These peak surges or the

highest surge (for each of the modeled storms in a study) reached at all locations within an area are included in the MEOW.

Page 62: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 62

Limitations of the MEOW

• The MEOW does not predict the limits of inundation from a single storm

• Delineates the areas that are threatened by storm surge from all hurricane scenarios modeled in the study.

• The multiple storms included in a MEOW do not necessarily occur at the same time.

• The maximum surge for one location may differ by several hours from another location.

• The MEOW does not represent a “snapshot” of the storm surge at a given instant of time.

• It represents the highest water level at each grid cell during a hurricane irrespective of the actual time of occurrence.

Page 63: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 63

SLOSH Model Accuracy

• The SLOSH model is generally accurate within plus or minus 20 percent. – For example, if the model calculates a peak 10 foot storm surge

for the event, you can expect the observed peak to range from 8 to 12 feet.

• To account for inaccuracies in forecasting the behavior of approaching hurricanes, the National Hurricane Center recommends that public officials faced with an eminent evacuation prepare for the evacuation as if the approaching hurricane will intensify one category above the strength forecast for landfall (Mercado 1994).

Page 64: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 64

Model Limitations and Use

• SLOSH accounts for astronomical tides • SLOSH does not account for rainfall amounts, river-flow,

or wind-driven waves. This information is however, combined with the model results in the final analysis of at-risk-areas.

• The point of a hurricane's landfall is crucial to determining which areas will be inundated by the storm surge. Where the hurricane forecast track is inaccurate, SLOSH model results will be inaccurate.

• The SLOSH model, therefore, is best used for defining the potential maximum surge for a location.

Page 65: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 65

Slosh Calibration and Verification

• Verification is performed in a “hind-cast” mode, using the real-time operational model code and storm parameters and an initial observed sea surface height.

• The computed surge heights are compared with those measured from historical storms.

• The computed surge heights are compared with those measured from historic storms.

• Adjustments are not made to force agreement between computed and measured surge heights from historical storms.

• When necessary, further analysis and subjective decisions are employed to amend the track or other parameters of the historic storms used in the verification process.

Page 66: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 66

Calibration and Verification (continued)

• Ideally there would be a large number of actual storm events with well documented meteorology and storm surge histories.

• Hurricanes are rare for any given region. • It is even rarer to find adequate, reliable

measurement of storm surge elevations.

Page 67: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 67

Radius of Maximum Winds

9 nm

SecondaryWind Maximum

52 nm

LANDFALL

SOLOSH Modeling Verification: Hurricane Lili September4, 2002, Brian Jarvinen, National Weather Service, Interdepartmental Hurricane Conference March 1-5, 2000 Charleston, SC

Page 68: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 68

DA

UP

HIN

IS

LA

ND

BIL

OX

I

GU

LF

PO

RT

WA

VE

LA

ND

RIG

OL

ET

ES

BA

YO

U D

UP

RE

BA

YO

U B

IEN

VE

NU

EIN

DU

ST

RIA

L C

AN

AL

GR

AN

D I

SL

E

GO

LD

EN

ME

AD

OW

CO

CO

DR

IE

AT

CH

AFA

LA

YA

BA

Y

CY

PR

EM

OR

T P

T.

WA

X L

AK

E O

UT

LE

T

BU

RN

S P

OIN

T

INT

RA

CO

AS

TAL

CIT

Y

PE

CA

N I

SL

AN

D

HIGH WATER MARKTIDE GAGE

SLOSH STORM TIDE PROFILE

Page 69: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 69

SLOSH Model Verification Conclusions

• The values or functions for the coefficients within the SLOSH model are generalized to serve for modeling all storms within all basins and are set empirically through comparisons of computed and observed meteorological and surge height data from numerous historical hurricanes.

Page 70: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 70

Possible Sources of Error in SLOSH• Noise in surge observations often exceeding = or – 20%.• The bathymetry given to SLOSH is not accurate.• The topography given to SLOSH is not accurate.• Errors in the initial water height.• Wind wave effects, astronomical tidal effects, storm rainfall,

and riverine flooding. • Noise in observed meteorological parameters or the storm

track which is a source of error.

Mercado (1994). On the use of NOAA's storm surge model, SLOSH, in managing coastal hazards - the experience in Puerto Rico. Natural Hazards.

Page 71: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 71

CHAPTER 3

Similarities and difference between Tsunami and Storm Surge

Page 72: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 72

Page 73: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 73

Page 74: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 74

Page 75: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 75

Page 76: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 76

Page 77: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 77

Page 78: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 78

Page 79: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 79

Page 80: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 80

Page 81: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 81

Page 82: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 82

Page 83: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 83

Page 84: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 84

Page 85: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 85

Conclusion Now, to sum up my presentation the main points of my presentation is about Tsunami Vs. Storm Surge. The difference between Tsunami and Storm Surge is big because Tsunami is very destructive wave of water that afffects big cities and/or in some case it affects some country and tsunami is very big wave of water it can destroy Houses, buildings, parks etc. while storm surge is also a wave of water but storm surge is only affect short distance and height but it can destroy houses near Seas and/or Lake. But don’t worry because this abnormal wave of water is not happens fast for example a tsunami is not easy to create is only created by earhtquakes in water, volcanic eruption or sometimes if theres a meteor trike in water. For Storm Surge it only happens if a storm is in the Water. Storm Surge is created by storm because the wind pulls the water and creates big waves of water. In conclusion, my recommendations are : your mind should be active in calamities you have to be ready if theres any calamities written in this conlusion. Many thanks for your attention.

Page 86: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 86

REFERENCE• Anthes, Richard A. (1982). "Tropical Cyclones; Their Evolution, Structure and Effects, Meteorological Monographs".

Bulletin of the American Meteorological Society (Ephrata, PA) 19 (41): 208.• Cotton, W.R. (1990). Storms. Fort Collins, Colorado: *ASTeR Press. p. 158. ISBN 0-9625986-0-7.• Dunn, Gordon E.; Banner I. Miller (1964). Atlantic Hurricanes. Baton Rouge, LA: Louisiana State University Press. p. 377.• Finkl, C.W. Jnr. (1994). "Disaster Mitigation in the South Atlantic Coastal Zone (SACZ): A Prodrome for Mapping Hazards

and Coastal Land Systems Using the Example of Urban subtropical Southeastern Florida. In: Finkl, C.W., Jnr. (ed.), Coastal Hazards: Perception, Susceptibility and Mitigation.". Journal of Coastal Research (Charlottesville, Virginia: Coastal Education & Research Foundation) (Special Issue No. 12): 339–366.

• Gornitz, V.; R.C. Daniels, T.W. White, and K.R. Birdwell (1994). "The development of a coastal risk assessment database: Vulnerability to sea level rise in the U.S. southeast". Journal of Coastal Research(Coastal Education & Research Foundation) (Special Issue No. 12): 327–338.

• Granthem, K. N. (1953-10-01). "Wave Run-up on Sloping Structures". Transactions of the American Geophysical Union 34 (5): 720–724.

• Harris, D.L. (1963). "Characteristics of the Hurricane Storm Surge" (PDF). Technical Paper No. 48 (Washington, D.C.: U.S. Dept. of Commerce, Weather Bureau): 1–139.

• Hebert, Paul J.; Taylor, Glenn (1983). "The Deadliest, Costliest, and Most Intense United States Hurricanes of This Century (and other Frequently Requested Hurricane Facts)" (PDF). NOAA Technical Memorandum NWS NHC 31 (Miami, Florida: National Hurricane Center): 33.

• Hebert, P.J.; Jerrell, J., Mayfield, M. (1995). "The Deadliest, Costliest, and Most Intense United States Hurricanes of This Century (and other Frequently Requested Hurricane Facts)". NOAA Technical Memorandum NWS NHC 31 (Coral Gables, Fla., In: Tait, Lawrence, (Ed.) Hurricanes...Different Faces In Different Places, (proceedings) 17th Annual National Hurricane Conference, Atlantic City, N.J.): 10–50.

• Jarvinen, B.R.; Lawrence, M.B. (1985). "An evaluation of the SLOSH storm-surge model". Bulletin of the American Meteorological Society 66 (11): 1408–1411.

• Jelesnianski, Chester P (1972). "SPLASH (Special Program To List Amplitudes of Surges From Hurricanes) I. Landfall Storms". NOAA Technical Memorandum NWS TDL-46 (Silver Spring, Maryland: National Weather Service Systems Development Office): 56.

Page 87: PPT - Tsunami Vs. Storm Surge

04/07/2023 PPT - Tsunami Vs. Storm Surge 87

• Jelesnianski, Chester P.; Jye Chen, Wilson A. Shaffer (1992). "SLOSH: Sea, Lake, and Overland Surges from Hurricanes". NOAA Technical Report NWS 48 (Silver Spring, Maryland: National Weather Service): 71.

• Lane, E.D. (1981). Environmental Geology Series, West Palm Beach Sheet; Map Series 101. Tallahassee, Florida: Florida Bureau of Geology. p. 1.

• Murty, T.S.; Flather, R.A. (1994). "Impact of Storm Surges in the Bay of Bengal. In: Finkl, C.W., Jnr. (ed.), Coastal Hazards: Perception, Susceptibility and Mitigation". Journal of Coastal Research (Special Issue No. 12): 149–161.

• National Hurricane Center; Florida Department of Community Affairs, Division of Emergency Management (1995). Lake Okeechobee Storm Surge Atlas for 17.5' & 21.5' Lake Elevations. Ft. Myers, Florida: Southwest Florida Regional Planning Council.

• Newman, C.J.; BR Jarvinen, CJ McAdie, JD Elms (1993). Tropical Cyclones of the North Atlantic Ocean, 1871-1992. Asheville, North Carolina and National Hurricane Center, Coral Gables, Florida: National Climatic Data Center in cooperation with the National Hurricane Center. p. 193.

• Sheets, Dr. Robert C. (1995). Stormy Weather, In: Tait, Lawrence, (Ed.) Hurricanes... Different Faces In Different Places, (Proceedings) 17th Annual National Hurricane Conference. Atlantic City, N.J. pp. 52–62.

• Siddiqui, Zubair A. (April 2009). "Storm surge forecasting for the Arabian Sea" (PDF). Marine Geodesy (Great Britain: Taylor & Francis) 32 (2): 19.

• Simpson, R.H.; Arnold L. Sugg and Staff (1970-04-01). "The Atlantic Hurricane Season of 1969" (PDF). Monthly Weather Review (Boston, Massachusetts: American Meteorological Society) 98 (4). Retrieved 2008-08-11. Summary page for article

• Simpson, R.H. (1971). A Proposed Scale for Ranking Hurricanes by Intensity (Speech). Miami, Florida.• Tannehill, I.R. (1956). Hurricanes. Princeton, New Jersey: Princeton University Press. p. 308.• United States National Weather Service (1993). Hurricane!: A Familiarization Booklet. NOAA PA 91001: U.S.

Dept. of Commerce, National Oceanic and Atmospheric Administration, National Weather Service. p. 36.• Will, Lawrence E. (1978). Okeechobee Hurricane; Killer Storms in the Everglades. Belle Glade, Florida: Glades

Historical Society. p. 204.