of 40 /40
Unit 10 – Logic and Venn Diagrams Presentati on 1 Venn Diagrams: Example Presentati on 2 Venn Diagrams: Key Definit ions Presentati on 3 Venn Diagrams: Illustratin g Sets Presentati on 4 Venn Diagrams: Theoretical Example

Math unit10 logic and venn diagrams

Embed Size (px)

Text of Math unit10 logic and venn diagrams

  • Unit 10 Logic and Venn Diagrams

    Presentation 1Venn Diagrams: ExamplePresentation 2Venn Diagrams: Key DefinitionsPresentation 3Venn Diagrams: Illustrating SetsPresentation 4Venn Diagrams: Theoretical ExamplePresentation 5Venn Diagram: Practical Example

  • Unit 10 Logic and Venn DiagramsVenn Diagram: Example

  • Using the numbers 0, 1, 2, , 9 illustrate the sets: and

    Solution: Use a Venn diagram

  • Using the numbers 0, 1, 2, , 9 illustrate the sets: and

    AB4 is in BOTH sides4

  • Using the numbers 0, 1, 2, , 9 illustrate the sets: and

    AB7 and 9 are only in set A479

  • Using the numbers 0, 1, 2, , 9 illustrate the sets: and

    AB1, 2, 3 and 5 are only in set B4791235

  • Using the numbers 0, 1, 2, , 9 illustrate the sets: and

    AB0, 6 and 8 are not in A or B4791235068

  • You have finished viewing the presentationVenn Diagrams: Example

    Please choose an option

    Return to the StartPresentation 2Venn Diagrams: Key DefinitionsPresentation 3Venn Diagrams: Illustrating SetsPresentation 4Venn Diagrams: Theoretical ExamplePresentation 5Venn Diagram: Practical Example

  • Unit 10 Logic and Venn DiagramsVenn Diagram: Key Definitions

  • ABIntersection: Members of both set A and set B

  • ABUnion: Members of set A or set B or both

  • Complementary: Members not in the setAA

  • Universal Set: All membersU

  • AB

    Subset: All members of set A are in set B

  • Number of elements in a set:

    Empty set:

  • You have finished viewing the presentationVenn Diagrams: Key Definitions

    Please choose an option

    Return to the StartPresentation 1Venn Diagrams: ExamplePresentation 3Venn Diagrams: Illustrating SetsPresentation 4Venn Diagrams: Theoretical ExamplePresentation 5Venn Diagram: Practical Example

  • Unit 10 Logic and Venn DiagramsVenn Diagrams: Illustrating Sets

  • ABU

  • ABU

  • ABU

  • ABU

  • ABU

  • ABU

  • ABU

  • ABU

  • ABU

  • ABU

  • You have finished viewing the presentationVenn Diagrams: Illustrating Sets

    Please choose an option

    Return to the StartPresentation 1Venn Diagrams: ExamplePresentation 2Venn Diagrams: Key DefinitionsPresentation 4Venn Diagrams: Theoretical ExamplePresentation 5Venn Diagram: Practical Example

  • Unit 10 Logic and Venn DiagramsVenn Diagrams: Theoretical Example

  • ABUWhat is the shaded region?

  • ABUWhat is the shaded region?

  • ABUWhat is the shaded region?

  • ABUWhat is the shaded region?C

  • ABUWhat is the shaded region?C

  • ABUWhat is the shaded region?C

  • You have finished viewing the presentationVenn Diagrams: Theoretical Example

    Please choose an option

    Return to the StartPresentation 1Venn Diagrams: ExamplePresentation 2Venn Diagrams: Key DefinitionsPresentation 3Venn Diagrams: Illustrating SetsPresentation 5Venn Diagrams: Practical Example

  • Unit 10 Logic and Venn DiagramsVenn Diagram: Practical Example

  • U = {Natural Numbers less than 16}Describe set A and set BA = {Even Numbers}B = {Prime Numbers}410146128213573111159U

  • U28201416261218243010251521271319112917Describe Sets U, A, B and C U = {10,11,12,13,14,........29,30}A = {Even Numbers}B = {Multiples of 3}C = {Multiples of 5}CBA2223

  • You have finished viewing the presentationVenn Diagrams: Practical Example

    Please choose an option

    Return to the StartPresentation 1Venn Diagrams: ExamplePresentation 2Venn Diagrams: Key DefinitionsPresentation 3Venn Diagrams: Illustrating SetsPresentation 4Venn Diagrams: Theoretical Example