21
Capítulo 23: Lei de Gauss

Cap 23 lei de gauss

Embed Size (px)

Citation preview

Page 1: Cap 23   lei de gauss

Capítulo 23:

Lei de Gauss

Page 2: Cap 23   lei de gauss

O Fluxo de um Campo Elétrico

A Lei de Gauss

A Lei de Gauss e a Lei de Coulomb

Um Condutor Carregado

A Lei de Gauss: Simetria Cilíndrica

A Lei de Gauss: Simetria Plana

A Lei de Gauss: Simetria Esférica

Cap. 23: Lei de Gauss

Page 3: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Definição

Definição:

A Lei de Gauss considera uma superfície fechada (imaginária) que envolve a distribuição de cargas.

Essa superfície gaussiana, como é chamada, pode ter qualquer forma, por isso devemos optar por uma que facilite o calculo do campo, levando em consideração as simetrias do problema.

Page 4: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

O Fluxo

cosAvAvFluxo

cosAEAE

No caso do Fluxo Elétrico:

Onde: θ é o ângulo entre o vetor Campo Elétrico e o vetor normal à área A. E

Page 5: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

O fluxo elétrico através de uma superfície gaussiana é proporcional ao número de linhas de campo elétrico que atravessam a superfície.

Definição:

O Fluxo Elétrico

P/ Superfícies Gaussianas:

dAnE ˆ

dAnE ˆ

O vetor Normal, , sempre aponta para fora da superfície Gaussiana

Page 6: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Exemplo:

1. Um disco com raio r = 10 cm está orientado de modo que seu vetor normal faça um ângulo de 30° com o campo elétrico uniforme de módulo 2 x 103 N/C. (a) Qual é o fluxo do campo elétrico do disco? (b) Qual o fluxo de campo elétrico depois que ele gira e a normal fica perpendicular ao vetor campo elétrico? (c) Qual o fluxo elétrico através do disco quando sua normal é paralela à E? (54 N.m2/C; 0; 63 N.m2/C)

2. Um campo elétrico dado ela expressão abaixo atravessa um cubo gaussiano com 2,0 m de aresta, posicionado como na figura ao lado. Determine o fluxo de campo elétrico através das faces: (a) superior; (b) inferior; (c) esquerda ; (d) traseira. (e) Qual o fluxo elétrico total através do cubo?

a)-12 N.m2/C; b) 12 N.m2/C; c) -16N.m2/C; d) 0;

e) 0

CNjiyE /ˆ3ˆ4

Page 7: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Definição:

0

intˆ

qdAnE

A Lei de Gauss relaciona o fluxo do campo elétrico em uma superfície fechada (Gaussiana) com a carga elétrica contida no interior dessa superfície.

O fluxo elétrico não depende da geometria da superfície fechada, apenas da carga elétrica contida no seu interior. Se a carga for positiva, o campo elétrico aponta para fora da superfície. Se a carga for negativa, o campo elétrico aponta para dentro da superfície. O vetor normal à superfície, , sempre aponta para fora da superfície.

Page 8: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Exemplo:

1. Sabendo que q1 = q4 = 3,1 nC, q2 = q5 = - 5,9 nC e q3 = - 3,1 nC, determine o fluxo do campo elétrico através da superfície S. (- 670 N.m2/C)

0

intˆ

qdAnE

23 – 9. Observa-se experimentalmente que o campo elétrico em uma certa região da atmosfera terrestre aponta para baixo. A uma altura de 300 m o campo tem módulo de 60 N/C, e a uma altura de 200 m o campo tem módulo de 100 N/C. Determine a carga em excesso contida em um cubo de 100 m de aresta e faces horizontais a 200 m e 300 m. (3,54 μC)

Page 9: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Obtendo a Lei de Coulomb para uma Carga Pontual

0

intˆ

qdAnE

Cuidados na Escolha da Superfície Gaussiana!

Escolher uma superfície que envolve a carga que facilite o calculo da área. Essa superfície deve conter o ponto no qual o campo elétrico deve ser determinado. Ao longo dessa superfície o campo deve apresentar uma dependência espacial conhecida (de preferência constante).

2

int

04

1

r

qE

0

int2 )4(

q

rE rr

qE ˆ

4

12

int

0

Page 10: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Um Condutor Carregado

Em um condutor as cargas em excesso se movimentam com bastante facilidade. Devido a repulsão coulombiana essas cargas migram para a superfície externa do condutor. Isso ocorre em um intervalo de tempo muito curto, quase instantaneamente. As cargas se distribuem na superfície externa de modo a minimizar a energia do sistema.

q

1 2

q

3

E1 = 0

E2 = 0

E3 ≠ 0

A gaiola de Faraday

Em um condutor no

regime estático E = 0

Page 11: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Exemplo: Esfera Condutora

2

04

1

r

qE

Campo elétrico de uma carga puntiforme

Rr Ser

Superfície Gaussiana

Ad

E

R

Uma casca uniforme de cargas atrai ou repele uma partícula carregada situada do lado de fora da casca como se toda a carga estivesse situada no centro.

Rr Se

0E

r Superfície Gaussiana

R

21

rE

R

Se uma partícula carregada está situada no interior de uma casca uniforme de cargas a casca não exerce nenhuma força eletrostática sobre a partícula.

Page 12: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Distribuição Esférica de Cargas (Isolantes)

Apenas as cargas contidas no interior da esfera de raio r contribuem para gerar campo elétrico no ponto p.

int

3

3

3

4

3

4

qr

QR

0

intˆ

qdAnE

3

3

int RQr

q

Se r < R:

3

0

32 )4(

RQr

rE

3

04 RQr

E

Page 13: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Distribuição Esférica

23.19) Uma esfera condutora uniformemente carregada com 1,2m de diâmetro possui uma densidade de carga superficial de 8,1 µC/m2. (a) determine a carga da esfera. (b) Determine o fluxo elétrico através da superfície da esfera. (3,66 x 10-5 C; 4,14x106 Nm2/C) Duas cascas esféricas concêntricas carregadas tem raios de 10cm e 15cm. A carga da casca menor é 4x10-8 C, e da casca maior é 2x10-8 C. Determine o campo elétrico (a) em r = 5 cm, (b) r = 12 cm e (c) r = 20 cm. (0 N/C; 2,5x104 N/C; 1,35x104 N/C)

Exemplos:

Page 14: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Distribuição Esférica

23.51) Na figura uma esfera maciça não-condutora de raio a a = 2 cm é concêntrica com uma casca esférica condutora de raio interno b = 2a e raio externo c = 2,5 a. A esfera possui um carga q1 = +5 fC e a casca possui uma carga q2 = -5 fC. Determine o módulo do campo elétrico (a) em r = 0; (b) em r = a/2; (c) em r = a; (d) em r =1,5 a; (e) em r =3,5 a. (a) 0; b) 5.62x10-2 N/C ;c) 0.112 N/C; d) 0.0499 N/C; e) 0)

Exemplos:

Page 15: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Distribuição Linear Infinita de Cargas

0

intˆ

qdAnE

nE ˆ//

hqint

0

)2(

hrhE

rr

E ˆ2

1

0

Page 16: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Exemplo: Distribuição Linear de Cargas

Uma casca cilíndrica de comprimento 200m e raio 6cm tem uma densidade superficial de carga uniforme de 9 nC/m2.(a) Qual a carga total na casca? Determine o campo elétrico nas seguintes distâncias radiais do eixo do cilindro. (b) 2 cm; (c) 5,9 cm, (d) 6,1 cm e (e) 10 cm. (679 nC; 0; 0; 1000 N/C; 610 N/C).

rhA 2

rr

E ˆ2

1

0

0

intˆ

qdAnE

Page 17: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Superfície Condutora Infinita

0

intˆ

qdAnE

nE ˆ//

0AEA

0E

Page 18: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

0

intˆ

qdAnE

nE ˆ//

0AEAEA

02E

Superfície Fina, não Condutora, Infinita

Page 19: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Entre Duas Placas Condutora Infinita

0

intˆ

qdAnE

nE ˆ//

0

12

AEA

0E

Aq

12

Page 20: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Exemplo: Placas Infinitas

A figura mostra partes de duas placas de grande extensão, paralelas, não-condutoras, ambas com uma carga uniforme dos lados. Os valores das densidades superficiais de cargas são σ+ = 6,8µC/m2 e σ- = -4,3µC/m2 .Determine o campo elétrico (a) à esquerda; (b) entre e (c) à direita das placas. (1,4x105 N/C; 6,3x105 N/C)

Page 21: Cap 23   lei de gauss

Cap. 23: Lei de Gauss

Lista de Exercícios

1, 3, 6, 7, 12, 13, 15, 19, 21, 25,

27, 31, 39, 41, 43, 49, 51, 53, 57, 81

Referências HALLIDAY, D.; RESNICK, R.; WALKER, J.; Fundamentos de Física: Eletromagnetismo. 8a ed. Rio de janeiro: LTC, 2009. v3. TIPLER, P. A.; Física para Cientistas e Engenheiros. 4a ed, LTC, 2000. v2. SEARS, F.; ZEMANSKY, M.W.; YOUNG, H.; FREEDMAN, R.A.; Física: Eletromagnetismo. 12a ed. São Paulo: Pearson Addison Wesley, 2008. v3.