49
1 BioIntensive Harvest Extension Vegetable Crops in Cold Climates By Daniel Halsey SouthWoods Forest Gardens #5 in the Homestead Design Series SouthWoods Forest Gardens 17766 Langford Blvd Prior Lake, MN 5372 6127205001 Southwoodscenter.com

Bio-Intensive Harvest Season Extension - Vegetable Crops in Cold Climates; Gardening Guidebook for Scott County, Minnesota

Embed Size (px)

Citation preview

                                                                                                                               1  

 

 

 

Bio-­Intensive  Harvest  Extension      

Vegetable  Crops  in  Cold  Climates  

 

By  Daniel  Halsey  

SouthWoods  Forest  Gardens  

#5  in  the  Homestead  Design  Series  

 

 

 

SouthWoods  Forest  Gardens  17766  Langford  Blvd  Prior  Lake,  MN    5372  612-­‐720-­‐5001    Southwoodscenter.com  

                                                                                                                               2  

 

Bio-­Intensive  Harvest  Extension  of  Vegetable  Crops  in  Cold  Climates  

In the temperate climate of the upper Midwest, growing seasons, as traditionally defined,

are short compared to southern regions. This is due to warm temperatures and sunlight gaining

slowly and unpredictably later in spring and diminishing with earlier autumn frosts and cold

night temperatures. As winter snows melt and days grow longer, the last spring frost is still hard

to predict, and late frosts can set back an exposed vegetable garden to replanting or worse,

destroy weeks of transplants. Spring plants in growth are more susceptible to chilling damage,

whereas mature plants acclimate to colder temperatures. 7 Plants having bloomed and then

exposed to a night of freezing temperatures can lose their entire season of fruit. Although autumn

cold temperatures may freeze some plants that will thaw undamaged, each plant species has a

limited tolerance for depth and duration of near or subfreezing conditions.

For the serious food producer, gaining the most calories out of a garden with the least amount of

work involves understanding and utilizing the natural capabilities of plants and proven season

extension techniques. Plants live longer and produce more food, or allow for additional crops.

The right cultivars and thermal capture can buffer the effects of extreme temperatures and

increase the span of time available for planting, growing, and harvesting. In this paper I will

discuss some of the plant cold tolerance and the related species preferred by cold climate

growers, garden design, techniques, planting schedules, and the structures used to extend the

harvest. Publication  Update  1/2012  It  is  January  and  I  am  still  harvesting  carrots  and  broccoli  from  the  garden.  This  winter  has  been  unusually  mild  with  30-­50  degree  days  and  little  snow  cover.  This  has  limited  the  soil  

frost  depth  early  in  the  season,  yet  without  the  snow  cover,  increases  the  potential  frost  depth.  Carrots  from  under  plastic  and  straw  are  sweet  and  crisp,  a  highlight  at  workshops.  Potted  broccoli  plants  in  garage  windows  continue  to  produce  a  few  florets  each  week.  Now  late  

January,  the  weather  is  turning  back  to  average  temps  and  expected  snowfall.    

                                                                                                                               3  

Many times individual characteristics of a plant or resource are used to develop new techniques,

but the combination and integrated systems using all the available characteristics can increase the

needed effect. Planting cold tolerant cultivars in a heat collecting structure extends the growing

season into otherwise intolerable temperatures.

Understanding harvest extension as a two sided system allows for integration of new plant

cultivars that are cold hardy and finding a system that catches and radiates warmth and enhances

light on sun limited days.

Climate Effects of Vegetable Production

o USDA Zones

Due  to  climate  disruption  the  fluctuating  USDA  zones  have  offered  the  appearance  of  opportunity  

for  extended  crop  seasons,  yet  still  do  not  remove  the  climate  extremes  in  the  area.  The  warming  of  

fall  and  spring  are  deceptive  since  other  ecological  factors  such  as  disease  and  pests  will  also  

flourish  in  a  climate  more  suited  to  their  life  cycles.  Also,  the  day  lengths  have  not  changed.  Plants  

still  need  light  to  grow  and  the  warm  temperature  only  marginally  effect  that  need.    

It  is  the  extreme  weather  situations  that  season  extension  is  buffering.  The  months  that  the  coldest  

temperatures  damage  or  kill  annual  plants  in  exposed  gardens,  growers  attempt  to  select  plants  

that  will  withstand  lower  temperature  to  the  degree  that  protected  growing  systems  can  raise  the  

shelter’s  temperature.  Intermittent  extremes  in  low  temperature  can  be  managed  in  short  

durations.  Some  weeks  may  preclude  any  exposed  plants,  even  within  protective  structures  unless  

heat  sources  are  used.  Every  few  degrees  a  passive  growing  system  can  raise  the  minimum  

temperature  over  the  coldest  nights  means  higher  yields,  faster  growing  plants,  and  more  plants  to  

choose  from.  Methods  to  extend  the  growing  season  have  been  devised  in  all  latitudes  over  

                                                                                                                               4  

centuries.  Across  the  world,  latitude  effects  the  light  availability  as  the  season  change  and  sun  dips  

lower  in  the  sky.  Maritime  regions,  lake  effects  such  as  in  northern  Michigan,  and  the  Pacific  loaded  

Jet  Stream  across  the  northwest  United  States  buffer  the  extreme  temperatures  otherwise  

experienced  in  the  mid  continent  states.  Literature  citing  growing  regimes  from  the  certain  latitude  

cannot  be  generally  applied  across  the  same  latitude.  Local  weather  conditions,  knowledge,  and  

history  must  drive  the  invention  of  new  systems.  USDA  zones  for  Minnesota  are  below.    The  

extreme  zone  minimum  temperatures  can  be  sustained  or  intermittent  for  weeks.    Most  of  the  

coldest  days  coincide  with  the    post  solstice  winter  days  of    late  January  to  February.  A  time  when  

harvest  extended  plants  have  been  exhausted  and  small  transplants  are  being  started  inside.    

 

Zone Fahrenheit Celsius Example Cities 1 Below -50 F Below -45.6 C Fairbanks, Alaska; Resolute, Northwest Territories (Canada)

2a -50 to -45 F -42.8 to -45.5 C Prudhoe Bay, Alaska; Flin Flon, Manitoba (Canada) 2b -45 to -40 F -40.0 to -42.7 C Unalakleet, Alaska; Pinecreek, Minnesota 3a -40 to -35 F -37.3 to -39.9 C International Falls, Minnesota; St. Michael, Alaska 3b -35 to -30 F -34.5 to -37.2 C Tomahawk, Wisconsin; Sidney, Montana 4a -30 to -25 F -31.7 to -34.4 C Minneapolis/St.Paul, Minnesota; Lewistown, Montana 4b -25 to -20 F -28.9 to -31.6 C Northwood, Iowa; Nebraska 5a -20 to -15 F -26.2 to -28.8 C Des Moines, Iowa; Illinois 5b -15 to -10 F -23.4 to -26.1 C Columbia, Missouri; Mansfield, Pennsylvania 6a -10 to -5 F -20.6 to -23.3 C St. Louis, Missouri; Lebanon, Pennsylvania 6b -5 to 0 F -17.8 to -20.5 C McMinnville, Tennessee; Branson, Missouri 7a 0 to 5 F -15.0 to -17.7 C Oklahoma City, Oklahoma; South Boston, Virginia 7b 5 to 10 F -12.3 to -14.9 C Little Rock, Arkansas; Griffin, Georgia 8a 10 to 15 F -9.5 to -12.2 C Tifton, Georgia; Dallas, Texas 8b 15 to 20 F -6.7 to -9.4 C Austin, Texas; Gainesville, Florida 9a 20 to 25 F -3.9 to -6.6 C Houston, Texas; St. Augustine, Florida 9b 25 to 30 F -1.2 to -3.8 C Brownsville, Texas; Fort Pierce, Florida

10a 30 to 35 F 1.6 to -1.1 C Naples, Florida; Victorville, California 10b 35 to 40 F 4.4 to 1.7 C Miami, Florida; Coral Gables, Florida 11 above 40 F above 4.5 C Honolulu, Hawaii; Mazatlan, Mexico

                                                                                                                               5  

Temperature Ranges

Minnesota  Climate  Average  annual  precipitation  -­  Northwest:  19  inches/year  Southeast:  34  inches/year  

Average  annual  snowfall  -­  Northeast:  70  inches/year  Southwest:  35  inches/year  

Latest  spring  freeze  -­‐    April  29  -­‐  metro  area  May  27  -­‐  far  north  

Earliest  fall  freeze  -­‐    October  5  -­‐  metro  area  September  16  -­‐  far  north  

Average  temperature  Spring  -­‐    36  F  north  44  F  south  

Summer  -­‐    60  F  north    70  F  south    

                                                                                                                                                                                     Fall  -­‐    38  F  north    46  F  south    

Winter  -­‐    6  F  north    16  F  south  

Daylight  Hours  

As stated previously, daylight hour gradually shorten then lengthen in winter months. The speed

at which the changes occur is slowest at the winter solstice after which the daylight begins to

increase and accelerate in change. The length of day is only one part of the issue. The quality of

light also is diminished. As seen in the chart below, in Minneapolis the intensity of the light on

December 22 is almost 1/3 (39%) the intensity of June 22. The days are in a plant sense, very

dark.

Latitude of Minneapolis, MN: 45o N

Zenith Noon sun Radiation

Date Declination angle angle intensity (%)

March 21 0 45 45 70.71

June 22 23.5N 21.5 68.5 ~92.4

September 23 0 45 45 70.71

December 22 23.5S 68.5 21.5 ~36.65

                                                                                                                               6  

This brings up another issue for northern growers. Not only do they have to increase the length of available light, they must increase its intensity 235% to achieve summer efficiency (June 22). Duration and quality of light reflect

directly in the growth of plants. Temperature duration and quality also play a large role in plant development.

             http://www.gaisma.com/en/

Clock  Time  

May  16th     Months    

Darkness  Sunrise  

Sunset  

                                                                                                                               7  

Growing Degree Days

Ambient temperature regulates plant functions, biological and chemical activities, thus the heat a

plant is exposed to over time promotes its growth. This influence of temperature has more of an

effect than light, moisture, or nutrition since all the processes involved are temperature

dependent. Growing degree days (GDD) is the measurement which plant drives growth. All

other resources met the GDD is the catalyst for growth and can be monitored by growers.

Calculating and using degree days takes only some simple math and a base temperature, the

minimum temperature for plant development, for the plant monitored. Combining the minimum

(Min T) and maximum (Max T) air temperature of a day and dividing by two will give an

average daily temperature. The difference between this number and the base temperature of a

specific plant will give a sum. If positive, that equal the degree days for that day. The insect pest

world has been studied well for calculating their degree days for spring arrival and seasonal life

cycles. Many commercial crops have been plotted for their development over degree-days. Rape

seed / Canola has been mapped out by the Canola Council of Canada using a 0ºC or 32ºF base

temperature. Stages of growth by degree days are enumerated from the emergence of cotyledons

and subsequent leaves in stage one, to stage six when flowering begins. Stage seven is seed

development. Stage eight, seed maturity to harvest. Each stage is divided in tenths for more

exacting stages of development. Canola needs 1249 - 1382 Celsius degree days to mature

(CGM).

• Lengthened seasonal daylight hours can reduce the GDD required for plants. In Albert,

Canada the GDD for Canola is reduced 150 GDD

                                                                                                                               8  

Soil temperature effects germination and crop development. In spring soil temperature is relative

to soil depth. Warm surface soils may be as much as 15 degrees cooler an inch or two below.

Low temperature and moisture reduce the seeds uptake of moisture needed to germinate. Degree

days also effect the seed more than minimum soil temperature for emergence. With variations in

immediate soil, seeds can take 75 to 150 Celsius degree days to emerge (CGM). Cold tolerant

vegetables may be planted earlier and may have a lower degree day Base temperature.

Garden vegetables vary in cold tolerance and emergence temperatures. The early spring plants or

over-wintering plants generally grow better in moderate to cool temperatures. Their seed also can

germinate in colder soils. Spinach being planted in late fall can overwinter and reemerge in the

spring. The fast growing seedlings are more susceptible to frost damage. With Canola, the

cotyledons are more fragile to freezing while the three to four leaf stage can withstand a few

degrees lower temperature. Winter readiness with tolerances between -15º and -20ºC is at the six

to eight leaf stage. It would be good to compare leaf stages as a guide for winter readiness. i.

After a hard freeze, it may take four to ten days for the plant to renew growth. The growing

point, at the center of the leaf rosette, must be undamaged.

                                                                                                                               9  

Base Temperatures for selected vegetables General plant growth requires a base temperature of 41ºF Corn and Beans 50ºF Pumpkins and Tomatoes 56ºF Lettuce 40ºF Peas an Asparagus 42ºF Potato 45ºF

SOURCE: Agrometeorological Centre of Excellence

(http://www.gov.mb.ca/agriculture/climate)

Season Extension

Plastics are heavily used to extend seasons, collect heat for soil, and deter weeds and insects. Research into new materials, translucent color effects on plants, and environmental residues continues.

Low Input Heat and Cold Mitigation Techniques

Plastic Mulch 8

o Plastic Mulch is used for early season soil heating. It is laid tightly on the soil two to three weeks before planting with edges buried into the side of the row.

Types o Black

Warms soil 2ºC - 4ºC at 2" depth. Prevents weed seed germination. Needs direct contact with soil for efficient heat transfer.

Photo-degradable • Same as above with decomposition from light

exposure, said to be left in the field after harvest (I have heard its field residue is problematic to mechanical planters, buried edges do not degrade).

Biodegradable • Same as straight black. Starch based, decomposed

by soil organisms. Recommend it be field-tested. o Clear

Warms soil 4ºC - 8ºC at 2" depth. May be used with direct seeded crops. Weeds may

                                                                                                                               10  

Germination under plastic and requires pre-plant weed control.

o White

Cools soil -1ºC, Cools soil for cool season crops. Requires pre-plant weed management.

Infrared Transmitting

• Warms soil 6ºC with selectively pervious to certain light wavelengths while deterring weed seed germination. More expensive and may reduce tomato and pepper yields compared to black plastic.

Row Covers

Row  covers  are  used  to  mitigate  temperature  extremes  and  protect  plants  from  insect  damage.  Use  

of  row  covers  has  shown  to  accelerate  production  and  increase  yields  (4.,    Wells  and  Loy,  1985).  

They  are  used  to  increase  air  and  soil  temperature  under  the  canopy  and  protect  young  seedlings  

from  wind  damage.  8  The  long  sheets  of  material  are  perforated  to  varying  degrees  and  allow  for  

moisture  and  air  exchange  while  slowing  the  loss  or  gain  of  temperature  under  the  cover  near  the  

plant.  Soil  is  also  protected  and  buffered  from  ambient  changes  in  air  temperature.    Air  temperature  

gains  under  the  fabrics  range  from  1-­‐5º  C  in  early  Spring  under  perforated  PE  plastic  to  5.9  -­‐  6.8ºC  

in  summer  (Wells  and  Loy  1985).  Soil  temperature  were  

4-­‐5ºC  higher  (Motsenboker  and  Bronnano  1989).  Greater  

increases  also  are  delivered  by  using  black  plastic  

"mulch"  ground  covers.  In  the  Labik  and  Siwek  trials,  

Lettuce  increased  yields  by  110.9%  and  Watermelon  

increased  263.6%.  All  trials  were  in  comparison  to  open  

ground  plantings.  

                                                                                                                               11  

Depending  on  the  cultivar,  row  covers  can  be  used  to  cool  the  soil  temperature  for  lettuce  

production,  however  the  use  of  plastic  mulch  increases  the  soil  temperature  negating  and  shading  

effect.  In  the  Libik  and  Siwek  trials,  the  first  crop  of  lettuce  came  from  fabric  row  covers.  Row  

covers  can  be  used  as  temporary  protection  for  young  plants  and  removed  as  they  harden  to  the  

open  environment.  This  is  often  done  with  smaller  transplants  or  direct  seed  plants.  The  cover  must  

be  removed  when  temperatures  under  canopy  reach  the  35ºC  -­‐  35ºC  range  since  plants  may  be  

damaged  or  killed.  High  temperature  can  also  cause  fruit  deformities  and  inhibit  pollen.  Row  covers  

must  also  be  removed  for  bee  pollination,  such  as  with  vine  crops.  8  .  

Supported Row Covers

Low Tunnels

There are mainly two kinds of materials for row cover, perforated plastic sheeting and

polypropylene woven fabric. Each has its benefits and failings. The plastic sheeting retains

the most heat after sunset yet is slower to warm in morning. The woven fabric retains less

warmth in nightfall, but exchanges for warmth in the morning more quickly. When each is

used with plastic mulch, the effects are magnified. On sunny days the combined two plastics

layers will increase the air and soil temp beyond tolerable limits of some plants. Woven row

covers either floating or on hoops exchange air faster and allow for solar heat to escape.

Floating Row Covers

Floating row covers, exclusively woven fabric, use no

structure to rise above the plants. The light material

rests on the plants directly. They are not used for tall

stem plants such as peppers. The sides are held down

                                                                                                                               12  

by mounded soil and although some abrasion to soft plant surfaces can occur from wind

movement, this is the least expensive summer material for the most effect. The limits of this

lighter fabric may come in colder seasons when temperatures drop to a low average. The season

and type of vegetable grown may determine the type of cover material used.

Radish Trial

In 1986 Loren and Young 9. did trials with various commercial row cover materials. Reemay was

used for radishes and winter squash. Among other benefits the spun fabric row covers

accelerated plant production. Covered plants had 3.5 times the edible bulbs than uncovered.

Plants were harvested in 21 days as apposed to the 27 day expectation. Abrasion on leaves was

observed in the Reemay covered plants.

The woven fabric Reemay increased the daily maximum and minimum temperature and heat

units (GDD) per day. The heat units were 1.5 to 2.4 times the GDD of the uncovered areas using

a 50ºF base temperature. In cucumber plant trials, plants with Reemay and black plastic mulch

yielded an average of 49 cucumbers as compared to the covered plants with no mulch baring 22,

and bare field plants that yielded an average of 17 9.

Degree day results for the period from May 16th to June 5th increased considerably under the

floating row cover Reemay. Whereas the uncovered areas had 157 GDD the covered areas had

458 growing degree days during the same period, When the trials started on May 16th the

covered row measurement was already a daily 17 GDD. It was not a comparison point for the

study, but the areas with floating row covers could have probably started the trail a week earlier

than the control. This would have been a classic opportunity for season extension beginning the

                                                                                                                               13  

growing season days or weeks earlier. In the case of the radishes, this would possibly have

brought them to market another week early (two weeks total).

Also know as low tunnels, these vary in size from mature plant height to a

height allowing growers to access the crop without removing the canopy. The

plastic is vented through small perforations. Research in Ontario Canada has

shown earlier harvests of Cucumber, lettuce, peppers, and melons. Row covers

must be removed before flower set on some crops. 11.

Individual Plant Techniques

Cloches are any covering that is for a specific plant.

Bell Jars The bell jars and glass covers were

propped up during the day and dropped

at night to keep the warmth. As early as

1659 English gardeners were using them

to protect fragile plants. The jars were

not vented and needed daily

adjustments, but increased the air

temperature considerably in the damp

British Isles. The thermal mass of the glass held heat for some time.

                                                                                                                               14  

Juice Jug

The simple

plastic jug is

often used to

protect plants

from frost. This technique used the soil heat and air o retain daylight warmth. The top is removed

during the day.

Water Walls add a large amount of thermal mass to the plant

proximity. The water will radiate heat as it cools for a considerable time.

Any container can hold the water will do as long as it encloses the plant.

The  density  of  the  thermal  mass  insulates  from  temperature  changes  and  

stores  heat  to  radiate.  

   

Dense Surrounds The dark and dense rubber of

tires collect and hold warmth for slow release

during frosty nights. Covered tires increase the

effect. 11. They can bee added to garden as needed

late in the season. Drainage holes should be made

to keep water from collecting in the tire.

                                                                                                                               15  

Hoop  Houses  

Like  the  floating  woven  row  covers,  hoop  houses  are  the  least  expensive  green  house  effect  available  and  many  are  home  built  with  conduit,  plastic  tubing,  and  even  livestock  fencing.  Hoop  houses  house  raised  beds  or  container  gardens.  Unlike  high  tunnels  that  are  directly  planted  in  the  enclosed  ground  soil,  hoop  

houses  are  shelters  for  many  varies  uses.  

Hoop  houses  are  shorter  than  high  tunnels  and  crops  cycle  through  the  seasons  for  starting  transplants,  growing  high  value  container  crops  under  the  canopy  or  for  later  outside  planting.  Used  by  low  volume  growing  or  residential  gardeners,  access  is  limited  by  a  door  on  either  end  and  the  floor  may  be  wood  chips,  planks,  or  gravel.  The  underlying  soil  has  minimal  use  for  thermal  mass  although  it  does  have  some  late  season  radiant  heat.  Water  barrels  for  heat  storage  and  compost  piles  give  off  some  heat  if  managed  well.  Many  growers  start  with  hoop  houses  and  move  to  or  add  high  tunnels  with  the  experience.  

   

Cupolas

In 1994 M. Cerne 5 trialled cupolas along tunnels, hit beds, and open air plantings. The structures had a 7'9" x 4'9.5" foot print , but no images are found of the Cupolas described. It is likely that the structures were peaked mini-greenhouses mostly likely vented from the top. The results did not differ much from plastic tunnels.

 High  Tunnels  Spinach  Trial  

In  2005,  Sharon  Knewton  and  Ted  Carey  of  Kansas  State  University  trialed  26  spinach  cultivars  in  a  3  season  Haygrove  high  tunnel  and  in  adjacent  field  plots.  Poor  germination  caused  a  second  seeding  3  weeks  later  due  to  temperature  effects.  The  second  planting  took  place  on  September  27th.  Germination  was  still  between  15  &  11  percent.  With  such  low  rates  of  germination,  and  using  a  wheel  planter,  the  seeds  were  dispersed  with  insufficient  density  to  deter  later  weeds.    Hand  broadcasting  was  seriously  considered.    Leaf  texture  and  growth  habit  

                                                                                                                               16  

varied  between  cultivars.  Increased  density  of  seeding  again  would  encourage  a  more  upright  growth  habit.  Two  or  the  varieties  were  completely  prostrate.  The  first  harvest  was  in  November.  Yields  ranged  from  .08  to  2.2  pounds  per  10  square  feet.  The  plants  were  then  left  to  over-­‐winter  in  the  tunnel.  March  harvest  yields  varied  between  5.12  and  7.58  pounds  per  10  square  feet.  The  spring  plants  had  more  leaves  per  plant  than  in  the  fall.  In  May  some  of  the  the  plants  were  observed  to  have  gone  to  seed,  had  elongated  internode,  or  were  bolting.  Eight  cultivars  including  Interceptor,  Space,  Umbria  and  Blackhawk,  had  the  best  appearance  and  least  bolting.  Of  the  final  best  looking  plants,  all  were  among  the  least  productive.  The  trial  was  inconclusive  and  continued.  

The  high  tunnel  has  become  the  serious  choice  for  season  extension.  The  universities  of  Minnesota,  Michigan  and  other  states  are  researching  and  promoting  the  use  of  high  tunnels  in  commercial  agriculture.    Best  practices  are  shared  at  regional  conferences  and  numerous  publications.  Many  colleges  have  manuals  specifically  for  the  climate  and  weather  of  the  regions  involved.  With  this  expansion  of  use  has  come  the  attention  to  biological  effects  of  the  tunnels  on  soil  and  plant  health.  Long  term  use  of  tunnels  without  soil  remediation  has  caused  issues  of  salt  build  up,  over-­‐wintering  pests,  and  disease.  The  accelerated  vegetable  production  depletes  the  soil  of  nutrients  having  produced  as  much  as  six  times  the  yield  of  a  comparable  outdoor  field  (Michael  Patrick,  Moses  Conference  2011).    High  tunnels  can  be  over  100'  long  and  36'  wide.  A  popular  option  is  to  have  shortened  structures  that  can  move  up  and  down  the  field  on  rails  or  by  skids.  

   

                                                                                                                               17  

A  table  from  the  Doug  Waterer's  report  in  Hort  Technology  shows  the  dramatic  accumulation  of  

Growing  Degree  Days  over  open  field  or  low  tunnels12.  As  stated  in  the  findings,  although  the  

tunnels  collected  the  heat  well  and  was  managed  by  venting,  managing  the  temperature  in  the  high  

tunnels  for  differing  crops  was  problematic.    Tomatoes  benefitted  from  delayed  ventilation  until  the  

temperature  reached  104ºF.  Peppers  however  suffered  under  those  conditions.  Frost  protection  in  

high  tunnels  was  comparable  to  low  tunnels  (No  data  shown).  Waterer  did  not  combine  high  and  

low  methods  in  this  study.  

Waterers  found  that  although  Muskmelon  did  well  in  the  high  tunnel  and  set  and  brought  fruit  to  

maturity,  the  plants  were  under  stress  from  the  heavy  yield.  In  1998  the  warm  temperatures  made  

for  little  difference  between  regimes  for  marketable  yields,  however,  in  the  cooler  2000  season  the  

high  tunnel  plants  preceded  the  first  frost  with  harvestable  fruits.  Overall  high  tunnels  had  59%  

higher  yields.  Sugar  content  and  flavor  was  unaffected.  In  conclusion,  Wateres  states  that  high  

tunnels  accelerate  growth,  improve  yields  of  standard  warm  vegetable  crops,  were  most  beneficial  

during  cooler  growing  seasons,  and  delivered  good  quality  crops  with  less  insect  and  disease  

problems.  

                                                                                                                               18  

 

The  moveable  high  tunnel  allows  small  growers  to  sell  a  diverse  number  of  plants  that  have  

differing  tolerances  and  optimum  conditions  for  growth.  By  moving  the  tunnel  the  grower  

can  warm  soils  in  spring  for  

early  cold  hardy  crops  and  

move  the  tunnel  away  once  

temps  have  raised  to  plant  

tolerable  levels.    Then  a  second  

crop  that  is    less  cold  tolerant  

benefits  from  the  canopy.  The  

tunnel  plan  can  have  four  or  

five  positions  during  the  

                                                                                                                               19  

seasons.  The  growing  season  can  start  in  February  with  carrots,  move  to  soil  warming  and  

tomatoes  and  then  fall  spinach  through  November  and  winter  leeks  which  are  already  

under  row  covers  at  the  field  end  since  May.  Rotating  through  the  field  plots  allows  some  to  

be  fallow  during  the  season  an  others  to  grow  multiple  crop  relays.  

The  Ontario  Ministry  of  Agriculture,  Food,  and  Rural  Affairs  recommends  removing  the  

plastic  off  the  high  tunnel  off  season  (winter).  This  extends  the  life  of  the  plastic,  prevents  

structural  damage  from  snow,  and  allows  increased  soil  moisture  beyond  drip  irrigation  

lines.  The  plastic  is  usually  rolled  and  tied  to  the  ground  on  one  side,  covered,  and  on  a  

warm  late  winter  day  replaced  on  the  frame  for  spring  soil  preparation.  

Combining  the  benefits  of  all  the  above  structures  within  a  high  tunnel  has  improved  the  

heat  collection  and  season  extension  for  cold  climate  growing.    The  key  to  much  of  the  

progress  is  viewing  the  tunnel  environment  as  a  dynamic  environment  able  to  buffer  

seasonal  changes.  The  tunnel  can  be  used  for  harvest  extension  like  growing  late  season  

vegetables  for  early  to  mid  winter  harvesting.  The  tunnel  delays  the  soil  freeze  for  weeks  

while  tubers  and  roots  lay  in  the  soil  for  later  than  typical  harvest.  Their  best  storage  being  

in  the  ground  until  needed.  My  personal  stand  of  Sunchokes  ()  was  harvested  in  the  fall  of  

last  year,  this  spring  while  preparing  the  soil  for  planting  I  found  missed  tubers  that  were  

twice  the  size  of  the  harvest  months  before.  The  deep  snow  and  straw  protected  them  as  

they  continued  to  thrive  6"  to  10"  beneath  the  surface.  A  hoop  house  or  row  cover  above  

the  tubers  would  allow  later  harvesting  and  longer  growing  periods  for  the  perennial  

vegetable.  

                                                                                                                               20  

My  only  concern  with  the  structures  is  the  amount  of  plastic  used  and  required  each  year.  

Plastic  mulches  are  soiled  and  wet,  unsuited  for  recycling.  Large  hoop  house  and  high  

tunnels  need  the  canopy  replaced  every  few  years.  Irrigation  lines  and  drip  tapes  degrade  

over  time  and  lose  usefulness.  All  which  makes  for  large  piles  or  bales  of  landfill  ready  

plastic.  I  hope  to  find  ecological  solutions  to  replace  these  plastic  materials.  

Other  than  materials  which  can  be  adapted  as  available,  the  tunnels  seem  to  be  the  

cheapest  and  best  solution  to  season  and  harvest  extension.  The  next  level  of  season  

extension  and  micro-­‐climate  options  is  the  green  house.  Many  times  more  expensive,  the  

immobile  green  house  allows  for  permanent  systems  and  creative  installations.  Prior  to  

plastics,  this  was  the  only  option  for  centuries,  for  those  with  the  means.  

Cold  Climate  Harvest  Extension  

In  the  scheme  of  season  extension  the  two  limiting  factors  being  considered  are  heat  and  

light.  These  are  then  the  design  drivers  for  all  inventions,  to  mitigate  the  cold  and  enhance  

the  plant  available  light.  

Mature Plant Protection in Fall

Foliar Sprays

• Frost Shield -- by Maz-Zee S.A. International, P.O. Box 82717, San Diego, CA 92138. Available from Peaceful Valley Farm Supply.

• Frost Away -- by Bonide. Available from Mellingers.

• Wilt-Pruf -- by Wilt-Pruf Produces, P.O. Box 469, Essex, CT 06426.

                                                                                                                               21  

• Frostguard -- by Custom Chemicides, P.O. Box 11216, Fresno, CA 93772. Available from local farm suppliers

Lowers freeze temp of foliar water ten degrees, strengthens cells walls, and penetrates leaf membranes. 4-6 weeks active.

 

Creating  Persistent  Micro-­climates  

Cold  Frames  are small “green house “ type structures at ground level where growers start spring

plantings and harden transplants. The soil is warmed and some thermal gain is achieved. They

must be monitored closely for excessive heat build up.  

Outside  Temp  0F  o Temperature  Differential  o Night      <  20F  warmer  o Day   10-­‐15  F  warmer  o Zone  5  Avg,  10-­‐15  F  o SpringTarget  70F  o Fall  Target  60-­‐65F    

Proximity  to  Structures  

Radiant  heat  emanates  from  solid  structures  as  they  cool.  As  is  the  case  with  water  walls,  barrels,  

and  stone.  The  buffering  effect  slows  the  cooling  of  the  near  plants  as  the  aggregate  temperature  is  

more  stable.  (Markhart,  A,  2011)  Partitions,  stones,  and  structures  within  a  garden  can  store  

daytime  heat  and  radiate  during  night.  Slowing  the  vertical  heat  loss  also  mitigates  the  decreasing  

ambient  temperature.  Covers  over  plants  contain  the  soil  radiant  heat  and  deflect  cold  air  moving  

across  the  garden.  Air  is  also  a  source  of  heat  storage.  Large  tunnels  hold  more  heat  than  small  and  

slow  the  temperature  change  in  cold  weather.  Adding  additional  layers  like  row  tunnels  or  floating  

covers  with  a  tunnel  magnify  the  effect.  Partitioning  the  air  also  slows  the  heat  loss  and  deters  

convection,  much  like  insulation.  

                                                                                                                               22  

Mid  Latitude  Aspect   Higher  Latitude  Aspect  

Aspect  

Progressive Techniques

Thermal  Mass  is  the  density  in  a  material  that  allows  

it  to   store  heat  or  cold.  The  density  is  slow  to  change  temperature,  

and  radiates  that  difference  to  the  surrounds  as  ambient  temperature  changes.  It  buffers  

the  change  in  the  area  of  extremes.  Air,  water,  stone,  sand,  and  soil  equalized  to  the  

ambient  temperature  at  different  rates.    Anything  that  has  a  thermal  mass  less  than  air  is  

considered  insulation,  because  it  inhibits  temperature  exchange.  Insulating  fibers,  straw  or  

layered  glass  will  inhibit  temperature  changes,  but  not  store  heat  or  cold.  14  Also  called  the  

Thermal  Flywheel,  thermal  mass  is  the  rate  at  which  a  material  equalizes  with  the  ambient  

temperature  gaining  or  losing  heat.  In  one  respect,  glass  can  b  used  to  capture  radiant  heat,  

and  thermal  mass  can  store  it.    This  is  done  in  green  houses  and  growing  spaces  with  

barrels  of  water,  stone,  and  even  soil.    Site  Selection  using  the  south  face  of  a  masonry  

building  can  provide  5-­‐6  degrees  of  frost  protection.  11.  

Aspect

South facing slopes collect more sunlight heat and drain away cold air to lower areas. Tender

plants can be extended up to two weeks in fall and spring. 11.

 

 

                                                                                                                               23  

Earthen Walls and Subsoil Solar Heat Storage

Earth Ships use the thermal mass of the ground to assist in

heating and cooling. The southern aspect collects heat in

winter.

Below  Grade  growing  spaces  are  protected  from  heat  and  

at  the  same  time  have  good  light  since  the  sun  is  many  

time  directly  overhead  in  these  latitudes.  In  Bolivia,  

Walipinis  were  used  just  this  way  to  cool  the  air.  Dug  into  

the  hard  soils,  the  walls  created  thermal  mass  heat  temperature  buffering.  At  the  right  

aspect  the  sun  would  shine  a  great  part  of  the  day.    

Bolivian Walipini

Victorian Pit Gardens did much the

same as Walapini, though much smaller

and for ornamental plants more than

food production. The thermal mass,

glass and aspect to the sun warmed the

air inside. Walipinis mitigated the harsh

heat conditions with cool deep soils,

while the Victorian pit gardens collected

warmth.

                                                                                                                               24  

 

Greenhouse

 Above  grade  raised  beds  warm  sooner  in  spring  8.  Making  soil  workable.    Drainage  is  better  

attended  also  with  good  soils.    

Above  ground  or  below  ground,  structures  design  to  mitigate  hot  or  cold  temperatures  still  have  

the  issue  of  light  management.  Any  semi-­‐permanent  structure  needs  to  be  able  to  catch  the  sun  at  

all  times  of  the  year.    

Light  Reflection:  

As  stated  previously,  length  of  exposure  to  sunlight  in  winter  has  only  39%  the  intensity  of  summer  

sun.    The  short  days  are  also  darker.    Reflecting  light  into  growing  spaces  add  some  heat,  but  add  

more  valuable  light.  Doubling  or  tripling  the  intensity  is  difficult.    Without  artificial  light  few  options  

are  available.    One  option  is  to  use  shade  tolerant  cultivars  to  reduce  the  light  requirements.    Some  

plants  can  tolerate  shade,  but  may  not  thrive  or  fruit.    More  light  means  less  energy  used  for  stem  

elongation.  The  combination  of  frost  tolerance  and  shade  tolerance  makes  a  plants  a  good  candidate  

for  protected  winter  production..    

                                                                                                                               25  

 

 

Partial Shade Tolerant Amaranth (Grain) Amaranthus Arugula Eruca vesicaria Beet Beta vulgaris craca Tolerant to 15ºF Tuberous Begonia Begonia tuberhybrida Broccoli Brassica oleracea italica Cabbage Brassica oleracea capitata Caraway Carum carvi Cauliflower Brassica oleracea botrytis Chard Beta vulgaris cicla Coriander (Cilantro) Coriandrum sativum Scented Geranium Pelargonium graveolens Jewelweed Impatiens capensis Kale Brassica oleracea acephala Kohlrabi Brassica oleracea caulorapa Lambs Quarters Chenopodium album Lentil Lens culinaris Lettuce Lactuca Dano Lettuce Lactuca 'Dano' Integrata Red Lettuce Lactuca 'Integrata Red' Miner's Lettuce Claytonia perfoliata Love Lies Bleeding Amaranthus caudatus Love-in-a-Mist Nigella damascena Marigold Calendula officinalis French Marigold Tagetes patula Marjoram Origanum majorana Mustard Brassica alba Mustard Green Brassica juncea Nasturtium Tropaeolum majus. Onion Allium cepa Oregano Origanum vulgare Pansy Viola tricolor Parsley Petroselinum crispum Pumpkin Cucurbita maxima Rutabaga Brassica napus napobrassica Summer Savory Satureja hortensis Spinach Spinacia Cold Tolerant to 8ºF Summer Squash Cucurbita pepo Sweet Alyssum Alyssum saxatilis

Shade Tolerant Tuberous Begonia Begonia tuberhybrida Jewelweed Impatiens capensis Miner's Lettuce Claytonia perfoliata Cold tolerant to 11ºF

Oregano Origanum vulgare

Potato Solanum tuberosum

                                                                                                                               26  

Lemon Verbena Aloysia triphylla Violet Viola odorata Watercress Nasturtium officinale  

Reflected  light  can  come  from  structures  and    fences,    buildings  with  south  facing  glass  or  white  walls.    

Buildings  with  reflective  paint  (white)  .    Fabrics  and  simple  sheets  hanging  on  the  away  side  can  

reflect  sunlight  into  the  plants.  Plastic  sheeting,  some  with  metallic  surfaces  can  direct  sun    back  to  

the  garden  area,  and  soft  sky  light  on  cloudy  days..  Snow  in  winter  the  snow  can  be  piled  up  around  

a    green  house  or  tunnel  reflecting  sun  and  increasing  the  available  light  for  plants.  Trees  covered  

with  snow  also  reflect  light,  Coniferous  trees  hold  snow  longer  tan  deciduous.  Poplar  and  white  

barked  trees    can  reflect  some  light.

Growers in cold climates use compost heat from static piles within a growing space. Growing

Power of Milwaukee, Wisconsin uses the combination of compost, large fish tanks used for

Aquaponics, and the passive solar of green house windows to raise the air temperature.

Ground source geothermal heat pumps are 400% efficient in extracting heat from circulating

underground water loops. A comparatively high capital investment for a large space, but much

cheaper than others to use over time.  

                                                                                                                               27  

Soil  Temperature  Network    

Soil  temperature  is  the  signal  for  many  growers  to  be  in  the  fields  with  seed.  Select  farms  across  the  states  have  soil  probes  monitoring  the  fluctuating  soil  temperature.  Germination  of  the  seeds  depends  on  soil  moisture  and  temperature.  The  chart  below  is  a  farm  in  Eden  Prairie,  Minnesota.  

 http://gis.mda.state.mn.us/maps/csgsoil.htm

 

Germination Temperatures

Garden plant list - Appendix A

Spring  and  Fall  Cold  Soil  Species    -­    Appendix  B  

                                                                                                                               28  

Early Spring and Fall Plantings

According to Carol Ford in her Northland;'s Green House Manual, Winter is divided up into

three times, Diminishing Light, Solstice, and Expansion of Light. For each there are plant

cultivars that either tolerate the diminished light or don't care. She likes the "don't care" plants.

She suggests Arugula and Mustards as the days grow shorter. Arugula grows fast but mild in the

cool days.

o Diminishing Season -Late September to Mid-November crops

Leaf Lettuces Claytonia Vitamin Green Red Russin Kale Bull's Blood Beets Chard Mizuna Asian Green (Nov)

o Solstice Season- Late November to Early January

Chinese Cabbage Pac Choi Mustard Greens Garden Cress Tatsoi Tokyo Bekana

o Expansion Season

Mixed Lettuces

o Perennial Species

It  is  important  to  look  at  cultural  sources  of  cold  climate  growing  techniques.    Areas  with  short  

seasons  and  high  altitude.  Growers  in  upper  latitudes  in  Canada,  Europe,  Asia  and  South  America  

may  have  information  and  techniques  useful  for  other  cold  climate  growers.  The  University  of  

Idaho's  Short  Season,  High  Altitude  Series  gives  good  information  on  practices  for  those  areas.    It  

                                                                                                                               29  

deals  with  elevations  above  4500  feet  or  USDA  hardiness  zone  at  4  or  less,  or  110  days  of  frost  free  

growing  days.  Bulletins  859  covers  season  extension,  winter  plant  protection  of  perennials  and  

small  shrubs.  Bulletin  863  lists  vegetable  adapted  to  the  climate.  The  immediate  lesson  in  Idaho  is  

selecting  the  right  plants.  Much  like  John  Berehbaum  of  Michigan  State  who  promotes,  "The  right  

plants  in  the  right  place,  at  the  right  time".  Many  of  the  vegetables  are  harvestable  in  60  to  100  

days.  

Pre-Season Transplants

Transplant Limitations

Suitability

Problem Issues

o Transplant Shock o Plant suitability o Increased labor o Sterilization of planting

media o Capital intense

investments o Environmental controls in

heat, light, pests, disease, and sanitation

Well Transplanted

o Tomato o Lettuce o Cabbage o Brussels Sprouts o Broccoli

Transplant Tolerant o Celery o Onion o Pepper o Eggplant

o Cauliflower

Transplant Sensitive o Cucurbits o Corn o Legumes

Transplant Damaged o Tap Roots

Beets Carrots Turnips

Benefits from transplant use.

o No environmental stress during early growth stages

o Protection from disease pathogens and insect damage

o Controlled growth for uniform shape, timing and quality.

o Reduced loss from non-germination o Efficient use of water and fertilizers o Efficient use of space o No thinning

                                                                                                                               30  

Root Injury and Shock

Injury Prevention Wide Spacing, Deep Planting Mix Individual Plant sections Soil covering roots at transplant Seedlings at optimal range for transplanting

• Seedlings still in a vegetative growth state transfer better than plants in the reproductive stage.

• Younger seedlings better accept transfer, but are susceptible to injury.

No root or shoot pruning Brushing daily the tops of young plants, 2.25 inches high, reduced the

plant growth by 50%. This reduced stem elongation and damage during transplanting.

From Using Transplants in Vegetable Production Pub# 8013, Schader, Wayne L., UCLA, 10. Division of Agriculture and Natural Resources

Seasonal Crop Rotations, Successions, and Relays

Rotation Principles

Seasonally or annually repeating a vegetable in the same garden space reduces yields over time and increases the disease and insect pressure. 1 Crop rotation contributes to disease suppression, less compaction, increased microbial communities, and improved soil structure. 2

Factors reducing potential

• Soil borne diseases • Species specific nematodes • Soil related insects • Lower Organic Matter or Limited Diversity, of nutrients and organic

material • Build up of toxic chemical Residues • Exhaustion of species specific minerals

Important Interacting Vegetable Families

• Pea, Legumes • Goosefoot • Mustard

                                                                                                                               31  

• Parsley • Nightshade • Gourd • Composite • Lily • Grass • Mallow

Using vegetable family groups is an easy way to keep a rotation simple and reduce competition for nutrients, insect pressure, and allelopathic effects. Some families can be intercropped and rotated in fewer groups. 1

Some vegetable groups should not follow others.

Common vegetable diseases can sustain themselves on various species and persist in the soil for years. For this reason rotations are designed to retard the spread of disease.

Examples of disease persistence in soils

o Fusarium Root Rot, 2-3 year

o Cabbage Club Root, Mustard Family Fungal Disease, 4-5 years

o Tomato Canker, 3 years

o Corn is an alternate host for Pink Root Rot. Onions following corn can be severely effected

o Tomato Verticillium Wilt Fungus, Nightshade Family, Indeterminate persistence in soil

Resistant Cultivars: Carnival, Celebrity, Santiago

o Root Rot Nematode effect Tomatoes, Carrots, and Potatoes. These vegetables increase the nematode population. 1

Alliums, watermelon and certain black eyed peas are Nematode resistant

Grasses, such as corn suppress root rot nematodes.

Sudan Grass Hybrid, "Trudan 8" is a biofumigant for the reduction of nematodes when used as a cover crop 6.

Elbon and Winter Rye inhibits Nematodes

                                                                                                                               32  

Organic allelopathic toxins

Corn toxins in decomposed stubble can inhibit the next crops.

Inhibits root growth of Lettuce, Beets, and Onion.

Nutrient deficiency

Tomatoes and high nutrient species can deplete the soil for the next crop. Soil testing will report deficiencies while soil amendment and cover crops rebuild nutrients

Fresh garden plots from previous turfed areas are susceptible to existing turf grubs and active insects. Root and tuber crops may especially be affected. It is preferable to plant Corn, Watermelon, and Squash the first year of a new garden bed using existing turf soil.

Groups in rotation.

Single Season Rotation Example

By order of garden space in a quad garden.

o Season 1 GRASS PEAS NIGHTSHADE MUSTARD

o Season 2 PEAS NIGHTSHADE MUSTARD GRASS

o Season 3 NIGHTSHADE MUSTARD GRASS PEAS

o Season 4 MUSTARD GRASS PEAS NIGHTSHADE

                                                                                                                               33  

Coleman's Maine Back-up Winter Crops o Oct., Nov., Dec. o Arugula. Mache

• January o Arugula, Carrot, Spinach

• February o Arugula, Carrot, Spinach, Mizuna, Claytonia, Lettuce, Chicory, Radish

• March o Arugula, Carrot, Spinach, Mizuna, Claytonia, Lettuce, Radish, Minutina

Relay Intercropping (Coolman and Hoyt 1993) combines the best of short duration crop rotation while planting species in a mixed regime. Plants are started in staggered stages and removed as other plants are transplanted in. Usually seeds start first in early season, then a series of other crops are transplanted in as space and temperature allows.

LER

Land  Equivalent  Ratio  

In  1980  Mead  and  Wiley  developed  the  LER  index  for  measuring  yields  in  intercropped  fields.  Yields  are  calculated  as  intercrop  yield  over  mono-­‐crop  yield.  

Each  plant  is  measured  on  a  field  as  a  mono-­‐crop  and  then  by  calculated  by  relative  space  used  for  intercropping.  In  Brian  Kahn's    Intercropping  froField  Production  of  Peppers,  he  reviews  the  studies  he  collected  and  compares  the  different  plant  families  and  their  interaction  in  various  combinations.  

                                                                                                                               34  

Intercropping  Peppers  and…  

the  Allieceae  (Onion)  Family  

Peppers  increased  59%  when  intercropped  with  onions  and  although  the  onions  yield  fell  36%,  only  30%  of  the  space  could  be  used  for  onions  when  the  plant  spacing  was  completed  (Prabhakar  and  Shukla  1990).  

Kubra,  et  al  (2008)  focused  on  the  spacing  of  peppers  and  onions.  The  goal  was  for  an  LER  of  greater  than  1.  1  is  equal  to  the  monocrop  yield  of  the  same  area.    Spacing  Peppers  as  the  primary  crop  at  60  x  30  cm  and  onions  at  15  x  40  cm  gave  an  LER  of  1.18.  Placing  onions  as  the  primary  crop  at  15  x  20  cm  with  peppers  at  60  x  45  cm  reduced  shading  and  returned  an  LER  of  1.16.  

Brassicaceae  (Mustard)  

The  most  striking  is  the  results  from  a  Kaur  and  Khurana  2008.  Intercropping  in  cabbage  was  tomato,  muskmelon,  peppers,  and  cucumber.  The  LER  of  the  cabbage  and  tomato  crop  was  5.4  LER.  The  cabbage  pepper  intercrop  was  3.7  LER.  

Ina  New  Mexico  study  by  Guldan  et  al,  1997,  early  August  pre-­‐harvest  intercropping  of  a  kale,  rape  and  turnip  was  planted  in  chile  peppers.  Yields  were  reduced  only  1  of  3  years  and  the  additional  forage  was  used  for  livestock  allowed  to  graze  after  the  chilis  were  harvested.  

Bromeliad  (Pineapple)  

Acting  as  nurse  plants  and  protecting  the  pepper  plants  in  Hawaii,  the  pepper  yield  was  30  to  50%  higher  than  mono-­‐crop  when  intercropped.  The  heavy  rains  and  high  winds  that  usually  damage  the  pepper  plants  was  mitigated  by  the  stalwart  pineapple.  (Uriza  Avila  et  al  2005).  

Fabaceae  (Legumes)  

Cow  Pea  was  found  to  have  less  insect  pressure  from  Thrips  and  Aphids  when  interplanted  with  peppers.  

The  preceding  effect  was  also  apparent  in  a  soybean  trial  with  peppers.  The  pepper's  leaf  water  was  higher  in  the  wind  shadow  of  the  legumes.  Less  desiccation  and  cooler  moist  air  was  apparent  (Hulugalle  and  Willatt,1987).  

The  best  intercrop  shown  was  where  there  was  reduced  competition  between  species.  Using  intercropping  in  unused  spaces  in  a  young  orchard  was  suggested.

Succession to Deter Disease and Pests

Whereas  crop  rotation  is  a  annual  plan,  succession  planting  is  within  the  same  season  on  the  same  plant  space.  

Early  cold  season  crops  are  followed  by  warm  season  crops,  and  then  another  planting  of  fall  cold  season  crops  are  planted  at  the  end  of  the  summer.  

                                                                                                                               35  

This  relatively  rapid  succession  reduces  pest  and  disease  opportunities.  In  addition  to  spatial  diversity  of  the  garden  plan,  using  various  plants  over  time  also  diminished  pest  resources  and  habitat.  

Example:

• Spring,Frost Tolerant, Mustard Family o Cold temp plants, Radishes, Kohlrabi, Turnips o Lettuce

• Summer, Nightshade Family o Warm temp plants, Tomatoes, Peppers o Squash

• Fall, Frost Tolerant, Goosefoot Family o Cold tolerant plants, Beets, Spinach, and Chard o Broccoli

Plant Spacing and Diversity for Interplanted Relays

Intercropping  is  placing  a  diversity  of  plants  in  close  proximity.  Although  the  most  popular  is  to  plant  a  secondary  crop  between  the  rows  of  a  main  crop,  small  less  mechanized  plots  can  have  increased  diversity  by  interplanting  many  types  of  plants  in  a  non-­‐liner  fashion.  Fast  growing  species  can  be  harvested  as  slower  species  need  room  to  grow.  In  inter-­‐planted  successions,  family  groups  should  be  kept  intact  using  various  cultivars  with  differing  growth  characteristics.  As  an  example,  Micro-­‐greens,  Bib  lettuce,  or  leaf  lettuce  can  be  planted  between  the  slower  endive  or  escarole.  1  

Intercropping  is  an  agricultural  practice  that  has  been  used  for  thousands  of  years  and  was  only  recently  replaced  with  machinery  and  chemical  use  in  the  1940s.  

In  winter  cropping,  the  same  rotations  need  to  be  applied  to  ensure  soil  fertility  and  limited  over  wintering  of  pests  and  disease.  

Some  intercropped  plants  use  more  N,  but  legume  and  other  nitrogen  fixing  crops  increase  N  in  the  soil.  Intercropped  fields  also  have  lass  crop  damage  from  disease  and  insects.  Intercropping  can  use  up  more  soil  resources  in  poor  soil  conditions.  If  the  secondary  crop  is  a  nurse  crop,  one  used  to  buffer  the  main  crop  from  environmental  extremes,  and  left  to  increase  soil  stability  ,  organic  material  and  nutrients,  the  soil  will  improved  while  the  main  crop  is  harvested.  3  

A  combination  of  intercropping  and  relay  cropping  partitions  the  soil  as  roots  of  the  two  plant  species  have  differing  characteristics.  (Andrews  and  Kassman,  1976)  Relay  planting  so  plants  needs  are  asynchronous  reduces  interspecific  competition.  

                                                                                                                               36  

Winter "Dormant" or Weather Protected Harvests

The  big  four  of  cold-­‐hardy  vegetables:  mache  (lambs  lettuce),  spinach,  kale,  and  cabbage.  When  given  sturdy  protection  from  ice,  snow  and  cold  winds,  survive  temperatures  as  low  as  10°F  (-­‐12°C).  

None  of  the  vegetables  grown  can  withstand  very  cold  temperatures  (sub-­‐freezing)  for  a  long  period  of  time.  However,  the  ones  listed  below  can  withstand  freezing  temperatures  for  a  short  period  of  time.  It  is  not  possible  to  predict  a  specific  vegetable  tolerates  a  specific  temperature  for  a  specific  number  of  hours,    there  are  too  many  variables.  

The Plants

Cold Tolerant Crops

Source: http://www.coldclimategardening.com/cold-climate/best-of-the-hardiest/

Plant Hardy to Notes

Arugula 15F/-9C Holds up reasonably well to rain

Beets 20F/-7C Can go colder with mulch

Broccolii 25F/-4C (?) Rain will probably kill it before the frost does

Brocolli overwintered 10F/-12C these are the biennial sprouting broccolis

Brussels Sprouts 0F/-16C Seriously, these taste nothing like the store-bought ones

Cabbage (for winter)

5F/-14C (hardiest varieties)

I haven't grown the spring cabbages like First Early Market, so I really don't know the timing

Carrots 15F/-9C

With mulch, these can be depended on to overwinter. An August 1st sowing still give useable, but smaller, roots. With carrots there seems to be big differences that are just related to how particular varieties grow as the days get shorter.

Cauliflower 25F/-4C (?) Rain and slugs tend to do mine in before the cold does

Cauliflower overwintered 5F/-15C

Takes soggy soil somewhat better than sprouting broccoli

Chard 20F/-7C Even if the plant dies back, often the crown survives to regrow in the Spring

Claytonia/Miner's Lettuce At least 11F/-12C Fast growing, compact, does well under cover

                                                                                                                               37  

Corn Salad/Mache At least 8F/-13C Seems to thrive unprotected in our rainy wet winters

Cress, Garden (Upland) At least 15F/-9C

Biennial plants can be started as early as late spring

Escarole/Endive Reportedly 5F/-15C

Good cloche candidate, since wetness is more of a problem than cold. Bitterness decreases with frost, and varies from variety to variety.

Favas 10F/-12C

I sow in late September. I've gotten away with sowing them in November; they will grow a little even in winter, during any spells when temps are above freezing!

Kale At least 8F/-13C Needs no protection

Kohlrabi 15F/-9C Can go lower with mulch or under cover

Garlic At least 8F/-13C I plant in late September. Basically, if the ground isn't frozen, you can put them in.

Leeks At least 8F/-13C

Big differences between varieties in terms of hardiness and bolting date. This entry reflects my experiences with Durabel.

Lettuce 24F/-4C Another good cloche candidate

Minutina ~ 15F/-10C Unusual, almost succulent leaves

Mustard 15F/-9C Hardiness is variable, depending on variety

Onions 0F/-18C

Most overwintered onions dry down in June. Waterlogged winter soils can be a problem for all overwintered onions

Onions, Walla Walla sweet Reportedly -10F/-24C Walla Wallas dry down in July.

Scallions At least 10F/-12C

This applies to Allium cepa types of scallions. A. fistulosum types are much hardier and non-bulbing, but also are less tender and hotter in flavor.

Parsnip At least 8F/-13C It's fun trying to keep these seeds damp until they sprout!

Radicchio Reportedly 5F/-15C Leaf types are easier and more reliable. Don't dawdle in sowing this one!

Radishes Uncertain

Various rots and soil dwellers spoil mine by midwinter, even though the plants are still alive

Spinach At least 8F/-13C Under a cloche they can be depended on to overwinter

 

                                                                                                                               38  

VERY COLD HARDY

In  general,  these  are  the  vegetables  that  can  be  planted  4  to  6  weeks  prior  to  our  average  frost-­‐free  date.  they  are  termed,  "Very  Cold  Hardy"  

o Asparagus o Collards o Endive

o Kale o Kohlrabi o Lettuce

Sample  listings  from  High  Mowing  Seed  Co.:  

Organic  Brussels  Winter  Chervil  -­  Winter  hardy  plants  for  early  salad  greens  or  for  the  herb  garden.  Chervil  has  flat,  light  green  and  lacy  leaves,  with  a  flavor  somewhere  between  parsley  and  anise.  The  plant  strongly  resembles  parsley  and  is  often  referred  to  as  "gourmet  parsley".  It  is  considered  one  of  the  classic  French  "herbes  fines".  Brussels  Winter  is  the  European  standard  and  very  winter  hardy.  Direct  seed  in  early  spring  for  summer  crop  or  fall  for  spring  crop.  Sow  seeds  ½-­1"  deep.  Grow  as  baby  leaf  or  full  size  using  6  seeds/ft  in  rows  12-­18"  apart.  Hardy  annual  12,800  seeds/oz(Anthriscus  cerefolium)    HMS  

Organic  Winter  Density  Lettuce  -­  Heat  and  frost  tolerant  for  an  all  season  selection.  Winter  Density  has  dark  green  leaves  and  heads  averaging  9-­10"  tall.  Heads  are  tightly  folded  and  rounded  in  when  mature  and  sit  high  on  the  stem.  Texture  is  a  cross  between  a  butterhead  and  a  romaine  with  good  flavor  throughout  the  season.  Requires  cool  temperature  for  germination.(Lactuca  sativa)    HMS  

Organic  Sorrel  -­  Sorrel  is  best  known  for  its  tangy  leafy  greens,  which  are  commonly  used  in  soups  and  stews,  in  salad,  or  as  a  braising  green.  This  cold  tolerant  leafy  green  is  becoming  increasingly  popular  as  an  over-­wintered    gourmet  spring  green.  Leaves  are  bright  green  and  slender  with  long  petioles.  Full-­size  leaves  grow  to  8"  long.  Plants  can  be  harvested  all  season  long  but  are  best  sown  in  late  summer  for  harvest  in  early  spring  when  most  tender  and  mild.  Grow  as  a  baby  leaf  or  for  full  size  leaves.  Direct  sow  as  soon  as  soil  can  be  worked  or  start  transplants  in  March.  Sow  seeds  ¼"  deep,  plant  spacing  is  8"  in  12-­18"  rows.  Plant  after  danger  of  frost  has  passed.  Dead-­head  seed  stalks  to  encourage  more  leaves.  Perennial  34M  seeds/oz  (Rumex  acetosa)  HMS  

o Mustard o Onion (from seed and sets) o Bunching Onions, OW o Peas o Potatoes o Rhubarb

o Rutabaga o Salsify o Spinach

Giant Winter Spinach, OW o Turnip

                                                                                                                               39  

FROST-TOLERANT

These are the vegetables that can withstand light frosts and can be planted 2-3 weeks before your average frost-free date.

o Beets o Broccoli HMS: Organic Santee F1 Hybrid Sprouting Broccoli - Also known as "broccolini" due to its appearance of minibroccoli heads atop leafy stalks. Abundant purple spears are tender, flavorful and packed with broccoli nutrients. Unlike most sprouting broccolis, Santee does not require cold treatment to initiate bud development. Becky Grube, UNH Extension, performed an over-wintering trial of sprouting broccoli in high tunnels and had impressive marketable yields as a late winter crop – perfect for late winter CSAs. (Brassica oleracea var italica)

o Brussels Sprouts o Cabbage o Carrots o Cauliflower o Celeriac o Celery

o Chard o Chinese Cabbage o Jerusalem Artichokes o Onion (from plants) o Parsnip o Radish

Garden Design

Slope, Aspect and Garden Placement

A level field is the dream of most gardeners. I agree with the exception of any perennial or orchard design where water is moved or collected in swales. An annual garden is easier to work on level ground. Terracing to achieve this also has heat-collecting benefits if the aspect of the hill is south. South facing or southern proximity to structures as written above will extend seasons via reflected heat and radiant heat. Walls or terrace faces will collect heat much like a masonry building. Large stones do the same.

It is important to place the garden close to the residence for access and also for more frequent interactions. The kitchen garden is right outside the door or perhaps on two sides of the sidewalk to the garage. The garden benefits from the close proximity to the steward, the thermal of the house, and possibly the single biggest water source, the roof ( with the use of large rain barrels or a tank)..

                                                                                                                               40  

Human Centric Concepts

The definition of gardens in popular gardening is the rigid grid of straight rows and aisles of bare soil. The memory of farm machinery and emulation of the olds ways of generation gone by, at least in the pattern, persists with many people. They slave to the standard expectations of seed packet instructions and culture. When a garden is planted, all ecological and environmental components are displaced. Where as we infiltrate our natural surroundings with all our influence and cultural expectations, residential landscaping be one way, the garden is totally human centric and the gardener should be in the center of it at all times. As the main livestock and steward of the plot, the planting, management and harvesting should be as easy as possible within ergonomic limitations. The garden should be planted around the gardener until the reach is exceeded. Then the gardener can move to a new plot and begin again without stooping and shuffling across already compacted soil.

Containing  the  gardener  within  the  center  saves  the  soil  on  the  surrounding  bed  for  the  organisms  that  occupy  the  space.    Planting  is  managed  through  close  interaction,  with  all  plants  over  the  span  of  the  growing  season.    The  scheme  for  planting  can  also  change  as  the  interplanted  relays  mature.  Frequently  harvested  micro-­‐greens  or  radishes  are  at  the  center  and  where  most  of  the  activity  takes  place.  Larger  plants  are  on  the  exterior  as  are  plants  with  longer  lifecycles.  Cabbage,  Broccoli,  Cauliflower  and  Parsnips  are  relegated  to  the  outer  ring.  Bush  beans  grow  at  the  entrance  of  the  outer  ring  while  carrots,  chives,  and  smaller  plants  fill  the  spaces.    

 Like  a  painter’s  pallet,  the  garden  is  planned  by  the  ecological  characteristics  of  the  plants  and  the  interaction  of  the  gardener.  Relays,  intercropping,  rotations  are  easier  to  manage.  Using  the  knowledge  of  climate,  plant  interactions,  succession,  size,  ecological  functions,  days  to  harvest  and  zones  for  plant  selection,  growing  more  food  in  less  space  with  less  energy  brings  a  double  yield.    

Resource Partitioning

Using interplanting, relays, and rotations partition the resources and allow resources to rebuild

through ecological processes 1. Partitioning separates the extraction of minerals over time and

space. Planting diverse species in patches rater than rows creates a dynamic response from soil

organisms and pests.

                                                                                                                               41  

Spatial planting regimes affect the use of resources and the lifecycles of pest insects. In each

column below is a planting pattern. Monoculture, Interplanting, and Diverse Patch planting.  

Imagine  the  lower  row  of  graphics  being  the  paths  of  insect  pests,  nutrient  extraction,  or  

competition.    As  plants  are  disbursed  and  mixed,  from  left  to  right,  in  the  top  row,  the  

monoculture  effects  are  broken  up.      

 

Temporal  planting  regimes  create  a  partitioning  effect  over  time,  rotating  plants  in  and  out  based  

on  cold  tolerance,  harvest  days,  and  growth  stages.    Well  planned  relay-­‐rotations  increase  the  

aggregate  yield  for  a  garden  plot.  Individual  monocrop  yields  are  reduced,  but  combined  vegetative  

harvests  increase.    Soil  organisms  benefit  from  the  mixed  sources  of  organic  material  and  habitat.    

                                                                                                                               42  

 

Species Form Ht x W Root Uses & Functions:

Spacing # plts

1 Tomato (A) UR 36X36 FibDp APR c Fung 30 3

2 Basil UR 18x12 FibSh Fla APC 10 4

3 Borage Mound 24x18 Tap APR INS 16 2

4 Collard c UR 36x10 Tap APRa 10 2

5 Sea Kale (A)

UR 30x18 FibDp Ins Mulch SB 16 2

6 Peppers UR 14x16 Fib INC 12 2

7 Nasturtium Mound 14x12 Rhizome APR 8 20

8 Onions UR 24x9 FibSh APC Fung 9 6

10a Comphrey UR 30x48 Tap CB DA INC INS 24”/3’ 8

10b Asparagus UR 54x24 Tap 10’ MenCi 24” 12

9 Cilantro UR 24x18 Tap INS INC NP 24 8

Polyculture Purposes / Functions / General Description & Concept:

This Salsa Garden has an interconnected group of plants.

                                                                                                                               43  

Tomato is part of the campatible plants of the Nightshade family. Brassicas should not be mixed the Nightshade family. Plants cross benfit from Fungicide, Aromatic Repellents and Confusers. Resource is partitioned via shallow, deep fiberous, rhizome and tap roots.

Patch Conditions (soil, moisture, light, successional stage, disturbance regime, etc):

Moderate Soil Moisture, Direct Sun Light, Annual Garden with rotated crops and perennial beneficial plants.

Abbbreviations for ecological functions: APR-aromatic pest repellent, APC- aromatic pest confuser, INS-insecticide, NemCi- Nematodical, CB-Chem Barrier, Fung- Fungicide, DA- Dynamic Accu., NP-Nurse Plant, Fib-Fibrerous, Sha-Shallow, Dp-Deep, Tap-TapRoot

 

In  guides  to  

planting  

spaces  the  

plans  rarely  

exhibit  the  

inter-­‐

cropping  

possibilities.    

Large  spaces  

are  left  

unused  

(bare  soil)  

while  plants  

slowly  grow  

into  them.    The  chart  above  disregards  interplanting  and  the  little  boxes  appear  to  be  a  guide  as  to  

the  pattern  that  should  be  used.  

 

When  working  with  established  lists  you  can  make  a  selection  list  of  ecological  analogs,  similar  plant  cultivars,  tested  for  hardiness.  Carrot,  Radish,  Lettuce  Cauliflower  

                                                                                                                               44  

  Two Early Cool Season Crops Seeded - ex. Carrots and Radishes

  Second Season Crop Transplanted – Lettuce

                                                                                                                               45  

First Crop Harvested - Radishes

Lettuce allowed to grow  Lettuce harvested and replaced with Cauliflower transplants.

                                                                                                                               46  

  Carrots harvested making room for Cauliflower

Cauliflower harvested and space planted with winter cover crop. Spinach or Mache, Purslane,

Claytonia, corn salad  

                                                                                                                               47  

References:  

1.  Vegetable  Rotations,  Successions  and  Intercropping  by  Roland  Roberts,  Texas  Ag  Extension    (http://lubbock.tamu.edu/horticulture/docs/vegrote.html)  

2  The  role  of  crop  rotations  in  determining  soil  structure  and  crop  growth  conditions  B.  C.  Ball1,  I.  Bingham2,  R.  M.  Rees1,  C.  A.Watson2,  and  A.  Litterick2  SAC  Crop  and  Soil  Research  Group,  1Bush  Estate,  Penicuik,  Midlothian,  UK  EH26  0PH;  and  2Craibstone  Estate,  Aberdeen,  UK  AB21  9YA.  Received  23  December  2004,  accepted  13  July  2005.    3.  Increasing  sustainability  by  intercropping.Author(s)    Coolman,  R.M.;  Hoyt,  G.D.Source    HortTechnology.Issue    3Page(s)    309-­‐312:  http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=agra4&AN=IND20371117    

4.  Changes  in  Soil  Temperature  Affected  by  the  Application  of  Plastic  Row  Covers  in  Field  Production  of  Lettuce  and  Waterlmelon  

5.  Overwintering    And  Early  Production  Of  Salad  Crops,  Cerne,  M.,  Acta  horticulturae.  July  1994.  (371).  p.  327-­‐330.    

6.Production  Guide  for  Organic  Carrots  for  Processing  2011,  NYS  IPM  Publication  No.  133  v2  

7.  CGM,  Canola  Growers  Manual,  Chapter  Effects  of  Moisture  and  Chapter  5,  Temperature,  Frost,  Hail,  (http://www.canolacouncil.org/contents5.aspx)  

8.  Season  Extension  Techniques  for  Vegetable  Grops.  Roddy,  Elaine,  Ontario  Minsitry  of  Agriculture,  Food  and  Rural  Affairs  (http://www.omafra.gov.on.ca/english/crops/hort/Season_Extension.htm)  

9.  Effects  of  Foating  Ro  Covers  on  Radishes,  Yellow  Spanish  Oniosn,  Cabbage,  Cucumber,  Winter  Squash  and  Sweet  Corn  in  Redmond,  Oregon  in  1986.  Nelson,  L.J.,  Young,  M.  

10.  Using  Transplants  in  Vegetable  Production  Pub#  8013,  Schader,  Wayne  L.,  UCLA,  Divison  of  Agriculture  and  NaturalResources  

11.  Garden  Strategies  for  Short  Season,  High  Latitude  Zones,  Bulletin  #859,  Love,  Noble,  &  Parkinson,  University  of  Idaho  Extension.  

12.  Yields  and  economics  of  high  tunnels  for  production  of  warm-­‐season  vegetable  crops.    HortTechnology.  2003  Apr-­‐June.  13(2)  p.  339-­‐343.    Choosing  and  Growing  Adapted  Vegetable  Varieties      13.  Intercropping  for  field  production  of  peppers,  Kahn.  (2010)..  HortTechnology,  20(3),  530-­‐53    14.  Nehemiah Stone, Thermal Performance of Straw Bale Wall Systems, Ecological Building Network (EBNet) October 2003 www.ecobuildnetwork.org  

 Elliot  Coleman  Materials:     Four  Season  Tools  –  Crop  Rotations  with  Moveable  High  Tunnels,  Smallfarmtools.com  

                                                                                                                               48  

  Winter  Harvest  Handbook  –  Chelsea  Green  publishing  1992     Endless  Harvest,  Mother  Earth  News,  March  2000,       Four  Season  Harvest  –  Chelsea  Green  Publishing  2009    

Growing  cool-­‐season  vegetables.    Bulletin  -­‐  Wyoming  University,  Cooperative  Extension  Service.  June  1991.  (942.56)  

Green  house  project:  sustainable  agriculture  in  urban  areas.    

 

Sustainable  Agriculture  Research  and  Education  (SARE)  research  projects.  Northeast  Region.  Sustainable  Agriculture  Research  and  Education  (SARE)  research  projects.  Northeast  Region..  2003,  PROJECT  LNE99-­‐128.    

Green  house  project:  sustainable  agriculture  in  urban  areas.Author(s)    Coolman,  R.M.,  Sustainable  Agriculture  Research  and  Education  (SARE)  research  projects.  Northeast  Region.:  http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=agra6&AN=IND43735826    

Growing  cool-­‐season  vegetables.Author(s)    Legg,  D.E.;  Cook,  J.Source    Bulletin  -­‐  Wyoming  University,  Cooperative  Extension  Service.:  http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=agra4&AN=IND92048075  (www.urbanext.uiuc.edu/veggies/.)  

Authors  –  Libik,  A;  Siwek,  P.  Source  –  Acta  Horticulturea  371,  1994  

Plant-­‐Environment  Interactions,  Cold  Response  and  Freezing  Tolerance  in  Plants,Wilkonson,  Robert  E.,  Marcel,  Dekker,  Inc.,  2000.  p.321-­‐342.  Hydroponic  systems  for  winter  vegetables.  Adams,  P.,  Acta  horticulturae.  May  1991.  (287).  p.  181-­‐189.  

Using  Growing  Degree  Days  to  Predict  Plant  Stages    by  Perry  Miller,  Will  Lanier  and  Stu  Brand  (http://ipm.montana.edu/training/PMT/2006/mt200103.pdf.)  

Benefits  of  floating  row  covers  for  vegetable  production.    Annual  report  -­‐  Oregon  Horticultural  Society.  1986.  77(77)  p.  130-­‐133.    

Spinach  Cultivar  Trial  in  A  3-­‐Seaon  Haygrove  Tunnel.  Knewtson,  S.,  Vasey,  T.,  Dept.  of  Horticulture,  Kansas  State  University  (http://printfu.org/read/spinach-­‐variety-­‐trial-­‐2005-­‐ec10.html?f=1qeYpurpn6Wih-­‐SUpOGumKunh7_f39PVy82Q6Mrg3cvp5oXg4d_G4IiXoKKekK_Zr5-­‐fjuPqh6_bn6Gjo5De2-­‐jh0ty_xsrgzYer5aOfrojbj6DfqaudrorN5ObZqKOV7OTcmtffzNzc2t7gztrnlOTfzJu_uquju9XZ4MrR3Knq2dnV5dfXyNrO0d7A09aU5dHLjqrz)  

Extending  the  Garden  Season,  Babara  Larson,  UW  Garden  Fact  Sheet-­‐Extension  Kenosha  County,  June  2006  

                                                                                                                               49  

Frost  hardiness  of  Asparagus  officinalis  L.  ,  Arora,  R.  Wisniewski,  M.E.  Makus,  D.J.  ,  HortScience  :  a  publication  of  the  American  Society  for  Horticultural  Science.  July  1992.  27(7)  p.  823-­‐824.    

Growing  small-­‐fruit  crops  in  short-­‐season  gardens  ,  Love,  Stephen  L.  Fallahi,  Esmaeil  Noble,  Kathy.  [Moscow,  Idaho]  :  University  of  Idaho  Extension,  c2009.  Bulletin  ;  868  Short-­‐season,  high-­‐altitude  gardening.    

Seeding  Rate  and  Planting  Arrangement  Effects  on  Growth  and  Weed  Suppression  of  a  Legume-­‐Oat  Cover  Crop  for  Organic  Vegetable  Systems  .  Eric  B.  Brennan,  Nathan  S.  Boyd,  Richard  F.  Smith  and  Phil  Foster,  Agronomy  Journal  2009  101:  4:  979-­‐988  

 

Gardening  Strategies  for  Short-­‐Season,  High-­‐Altitude  Zones   University  of  Idaho  1. Growing  Small-­‐Fruit  Crops  in  Short-­‐Season  Gardens    2. Growing  Tomatoes  in  Cool,  Short-­‐Season  Locations    3. Growing  Tree  Fruits  in  Short-­‐Season  Gardens    4. Hardy  Roses  for  Harsh  Climates    5. Herbaceous  Ornamentals:  Annuals,  Perennials,  and  Ornamental  Grasses    6. Introduction  to  Short-­‐Season  Gardening  in  Idaho    7. Managing  Soils  in  Short-­‐Season,  High-­‐Altitude  Zones    8. Selecting,  Planting,  and  Caring  for  Trees,  Shrubs,  and  Vines