27
Introduction to set theory and to methodology and philosophy of mathematics and computer programming Ordered pairs An overview by Jan Plaza c 2017 Jan Plaza Use under the Creative Commons Attribution 4.0 International License Version of February 14, 2017

2.7 Ordered pairs

Embed Size (px)

Citation preview

Introduction to set theory and to methodology and philosophy ofmathematics and computer programming

Ordered pairs

An overview

by Jan Plaza

c©2017 Jan PlazaUse under the Creative Commons Attribution 4.0 International License

Version of February 14, 2017

{x , y} – an unordered pair.{x , y} = {y , x} – not so with ordered pairs.

A point on the plane is represented as an ordered pair of real numbers.

6

-

r5

3〈5, 3〉

〈5, 3〉 6=〈3, 5〉

Definition (Kuratowski)The ordered pair with coordinates x , y , denoted 〈x , y〉 , is the set {{x}, {x , y}}

{x , y} tells that x and y are the components of the ordered pair.{x} distinguishes the first component.

Fact〈x , x〉 = {{x}, {x , x}} = {{x}, {x}} = {{x}}

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .

(←) Obvious.(If the first object is known under the names a and c , and the secondobject is known under the names b and d , then 〈a, b〉 and 〈c , d〉 areordered pairs formed from the same objects, and they are the same.)

(→) on the next slide

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .

Proof

(←) Obvious.(If the first object is known under the names a and c , and the secondobject is known under the names b and d , then 〈a, b〉 and 〈c , d〉 areordered pairs formed from the same objects, and they are the same.)

(→) on the next slide

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .

Proof

(←)

Obvious.(If the first object is known under the names a and c , and the secondobject is known under the names b and d , then 〈a, b〉 and 〈c , d〉 areordered pairs formed from the same objects, and they are the same.)

(→)

on the next slide

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .

Proof

(←) Obvious.

(If the first object is known under the names a and c , and the secondobject is known under the names b and d , then 〈a, b〉 and 〈c , d〉 areordered pairs formed from the same objects, and they are the same.)

(→)

on the next slide

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .

Proof

(←) Obvious.(If the first object is known under the names a and c , and the secondobject is known under the names b and d , then 〈a, b〉 and 〈c , d〉 areordered pairs formed from the same objects, and they are the same.)

(→)

on the next slide

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .

Proof

(←) Obvious.(If the first object is known under the names a and c , and the secondobject is known under the names b and d , then 〈a, b〉 and 〈c , d〉 areordered pairs formed from the same objects, and they are the same.)

(→) on the next slide

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→)

Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.

Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.

〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .

Case: a 6=b.

〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.

So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .

Case: a 6=b.

〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.

So, {a} = {c} = {c , d}.So, a = c = d .

Case: a 6=b.

〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.

So, a = c = d .

Case: a 6=b.

〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.

〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.〈a, b〉 = 〈c , d〉.

So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.

a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.

So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.

So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.

So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.

So, {a} = {c}.So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.

So, a = c .So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .

So, b = d .

Proposition: 〈a, b〉 = 〈c, d〉 iff a = c and b = d .Proof

(→) Assume that 〈a, b〉 = 〈c , d〉.Case: a = b.〈a, b〉 = 〈c , d〉.So, {{a}} = {{c}, {c, d}}.So, {a} = {c} = {c , d}.So, a = c = d .Case: a 6=b.〈a, b〉 = 〈c , d〉.So, {{a}, {a, b}} = {{c}, {c , d}}.a 6=b.So, {a, b} 6={c}.So, {a, b} = {c , d}.So, {c , d} 6={a}.So, {a} = {c}.So, a = c .So, b = d .

Fact〈x , y〉 = 〈y , x〉 iff x = y .

Thinking about program variables and their values. (In two different ways.)

1. A variable has a value: 〈VARIABLE-NAME,VALUE〉.2. A variable refers to a memory address. The memory address stores a value.〈VARIABLE-NAME,MEMORY-ADDRESS〉 together with〈MEMORY-ADDRESS,VALUE〉.